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Abstract— This paper introduces a modified robust iterative
control framework with L1 adaptive feedback for single-
input single-output (SISO) linear time invariant (LTI) systems
with iteration varying constant parametric uncertainties. The
adaptive loop compensates for nonrepetitive effects (exogenous
disturbances and/or uncertainties) and ensures that the plant,
as seen from the ILC input, is sufficiently close to its nominal
value for performance improvement through learning. The L1
controller is reformulated to accommodate the feedforward
input, resulting in an adaptation that considers changes in
system response due to learning. A rigorous stability analysis
is presented. Performance and trade-offs are evaluated via
simulation.

I. INTRODUCTION

Iterative learning control (ILC) is a feedforward control
strategy aimed towards systems that execute the same task
repetitively [1]. ILC is based on the idea that the perfor-
mance of such systems can be improved by using infor-
mation from previous trials. As opposed to other learning
control strategies (e.g. adaptive control, neural networks,
repetitive control), ILC modifies the control input rather
than the controller itself [1], [2]. As such, ILC can be
thought of as feedback control in the iteration domain.
Naturally, this property equips iterative learning controllers
with simplicity, robustness and fast convergence to iteration
domain equilibria with significant decrease in tracking error
metrics up to several orders of magnitude. Research on
robust iterative learning control has focused on disturbance
rejection, stochastic effects, transient growth, µ synthesis,
H∞ framework, robustness to high frequency modeling un-
certainties and design of ILC algorithms for systems with
large parametric uncertainties (see [1], [3]–[10]). Robustness
of control algorithms in the time and iteration domains
is especially important as applications with parametric un-
certainties (multi-agent systems, pick and place industrial
robotics, prosthetics) requiring monotonic behavior and high
tracking performance can benefit from it.

In this paper, we provide a rigorous stability analysis and
performance evaluation of the L1-ILC scheme in [11] on a
class of single-input single-output (SISO) linear time invari-
ant (LTI) systems. The L1 feedback loop is used to compen-
sate for iteration varying constant parametric uncertainties
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and other nonrepeating effects in the time domain, whereas
the ILC improves tracking performance in the iteration do-
main. That is, the presence of an adaptive feedback controller
makes certain the plant, as seen from the feedforward ILC
input, remains close to its nominal value. The use of L1
adaptive control as opposed to more conventional forms
(e.g. model reference adaptive control) can be attributed to
guaranteed robustness bounds (stability of the feedback loop
is a necessary condition for ILC), along with a priori known
steady state and transient performance. We modify the L1
adaptive control architecture to accommodate parallel ILC
signals and prevent the trade-off between time and iteration
domains previously found in [11].

The rest of the paper is outlined as follows. Section II
presents a modified L1 controller for a class of uncertain
systems. An overview of ILC, aspects pertaining to our
problem and the details of the learning controller in question
are given in section III. Section IV discusses the trade-offs
between time and iteration domain properties for the L1-
ILC scheme. Trade-offs and performance specifications are
evaluated via simulation in section V. Conclusions and future
work are discussed in Section VI.

II. L1 ADAPTIVE CONTROL

L1 adaptive control theory is a recently developed
methodology [12] with guaranteed transient performance and
robustness in the presence of fast adaptation. The critical
feature of L1 adaptive control theory is the decoupling
of estimation and control, realized by the insertion of a
bandlimited filter at a particular point in the architecture.
In L1 adaptive control, adaptation rates can be increased
arbitrarily; although practical concerns such as hardware
speed and noise may limit achievable performance. The
performance-robustness trade-off of L1 systems is defined
by the bandwidth of the filter and can be adressed with tools
from classical and robust control. Consequently, uniform
performance bounds on all system signals can be enforced
without resorting to gain scheduling, persistency of excitation
or high gain feedback.

L1 adaptive control algorithms have been developed for a
wide variety of classes. We now present the L1 architecture
for SISO LTI systems with unknown constant parameters.
To put the L1-ILC problem into a meaningful format,
we augment the original controller [12] with a bounded
feedforward signal. This makes sure that the ILC signal does
not act as a disturbance to the L1 controller and overcomes
the trade-off previously observed in [11].



A. Problem Formulation
Consider the class of systems

ẋ(t) = Ax(t)+B(u(t)+θx(t)), x(0) = x0,
y(t) =Cx(t).

where x(t) ∈ Rn is the measured state vector; u(t) ∈ R is
the control input; B,CT ∈ Rn are known constant vectors;
A ∈ Rn×n is a known constant matrix, with (A,B) control-
lable; θ T ∈Θ, {v ∈ Rn : ‖v‖∞ ≤ m} is an unknown constant
vector, with m∈R; and y(t)∈R is the output signal. Without
loss of generality, assume A to be Hurwitz. The L1 adaptive
controller ensures transient and steady-state behavior in the
input and output channels in relation to the L1 reference
system. The reference system is described by the triple
(A,B,C), the strictly proper bounded-input bounded-output
(BIBO) stable transfer function D(s) with DC gain 1 and
zero state space initialization, and the unknown parameter
θ . D(s) is also subject to the L1 norm stability condition

λ , ‖G(s)‖L1δ < 1, (1)

where G(s) , H(s)(1 − D(s)); H(s) , (sI − A)−1B and
δ , maxθ T∈Θ ‖θ‖1 = mn; which guarantees bounded-input
bounded-state (BIBS) stability of the reference system. The
feedforward augmented closed loop reference system can
then be defined as

ẋre f (t) = Axre f (t)+B(ure f (t)+θxre f (t)),
yre f (t) =Cxre f (t),
Ure f (s) = D(s)(KgR(s)−θXre f (s))+Ui(s),

(2)

with initial condition xre f (0) = x0, where Kg = 1/(CH(0)) is
a static precompensator; R(s) is the reference signal; and
Ui(s) is a bounded input signal in Laplace notation. By
changing the original reference model [12] to include Ui(s),
we seek to avoid the feedforward acting as a disturbance to
the closed loop system.

B. L1 Adaptive Controller
The L1 adaptive controller is based on the fast estimation

scheme which makes use of a state predictor, the bounded
feedforward input ui(t) and the bandlimited filter D(s).

1) State Predictor: The control law relies on the following
state predictor

˙̂x(t) = Ax̂(t)+B(θ̂(t)x(t)+u(t))−Kspx̃(t), x̂(0) = x0, (3)

where x̂(t) is the state prediction vector; θ̂ T (t) is the estimate
of the unknown constant vector θ T ; x̃(t), x̂(t)− x(t) is the
prediction error; and Ksp ∈Rn×n can be used to assign faster
poles to (A−Ksp) [13].

2) Adaptation Law: The adaptation law that estimates θ

is
˙̂
θ

T (t) = ΓPro j(θ̂ T (t),−x̃T (t)V Bx(t)), (4)

with initial condition θ̂
T (0) = θ̂

T
0 ∈ Θ, where Pro j(., .) is

the smooth projection operator defined in [14]; Γ > 0 is
the adaptation rate; and V = V T > 0 is the solution to the
algebraic Lyapunov equation ATV +VA =−Z, with arbitrary
Z = ZT > 0. The projection operator ensures that θ̂ T (t) ∈Θ

∀t ∈ [0,∞) by definition. This property is used extensively in
the analysis of L1 schemes.
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Fig. 1: ILC with modified L1 adaptive feedback

3) Control Law: The control input is defined as

u(t) = ui(t)+uad(t), |ui(t)| ≤M ∈ R,
Uad(s), D(s)(KgR(s)− η̂(s)),

(5)

where ui(t) and uad(t) are the feedforward and feedback
signals, respectively, and η̂(s) is the Laplace transform of
(θ̂(t)x(t)). Inclusion of the feedforward signal in the control
input leads to the augmentation of the state predictor (see
fig. 1). Hence, the controller generates the proper adaptive
signal uad(t) to track (2).

The closed loop system with control (5) defined according
to (3) and (4), together with the stability condition (1),
is stable. In addition, the system has uniform performance
bounds on both the input and the output:

‖xre f − x‖L∞
≤ φ1√

Γ
, lim

t→∞
(xre f (t)− x(t)) = 0,

‖ure f −u‖L∞
≤ φ2√

Γ
, lim

t→∞
(ure f (t)−u(t)) = 0,

(6)

where φ1 and φ2 are constants dependent on system param-
eters. In other words, arbitrary close model tracking can be
achieved by increasing Γ. As ILC uses information from
input and output channels, this property enables the use of the
reference model in designing the ILC update law. Moreover,
the reference system can be made arbitrarily close to the
design system [12] by increasing the bandwidth of D(s).
This, however, comes at the expense of reduced robustness.

When a feedforward signal is present in the control,
designing the state predictor with uad(t) instead of u(t) leads
to the following prediction error dynamics:

˙̃x(t) = Ax̃(t)+B(θ̃(t)x(t)−ui(t)), x̃(0) = 0, (7)

where θ̃(t) = θ̂(t)− θ . It should be noted that one cannot
reach the bound ‖x̃‖L∞

≤
√

θmax/(λmin(V )Γ) of the nonaug-
mented system, where θmax , 4maxθ T∈Θ ‖θ‖2

2 and λmin(V )
is the minimum eigenvalue of V , for (7) using the same
Lyapunov analysis [12] since it assumed that the dynamics
are not directly driven by an input. Additionally, one cannot
show the asymptotic result limt→∞ x̃(t) = 0 by application of
Barbalat’s lemma as ui(t) is arbitrary and does not depend
on x(t), x̃(t) or θ̃(t). Hence, it follows that (6) is not
an immediate result for the feedforward augmented system
when ui(t) is excluded from the predictor, since the bounds
and the limits rely on these two results. Further details of the



stability analysis and derivation of (6) for the nonaugmented
system can be found in [12].

III. ITERATIVE LEARNING CONTROL

ILC architectures, in terms of their relation to existing con-
trol loops, can be broadly classified in two groups as parallel
and series. In essence, equivalence can be found between the
architectures by rearranging input signal nomenclature. The
parallel architecture, which we use in our controller, divides
the input signal into feedback and feedforward components.
In this approach, the learning controller outputs the feedfor-
ward signal for the next iteration by processing the error and
the feedforward input at the current iteration.

ILC design methods are numerous and include frequency
domain, plant inversion, H∞ and norm optimization tech-
niques. Frequency methods, whilst only approximating the
system (due to finite trial duration), offer simplicity, flex-
ibility and tunability as in classical control. The learning
controllers that we use in this paper are thus designed using
frequency domain methods.

A. ILC Update Law

A common first order frequency domain ILC algorithm,
which we will employ in our controller, is the Q filter and
learning function approach:

Ui+1(s) = Q(s)(Ui(s)+L(s)Ei(s)). (8)

In (8), Ui(s) is the ILC input; Q(s) is the Q filter; L(s) is the
learning function; Ei(s) is the reference tracking error; and i
is the iteration index. In this algorithm, L(s) is designed to
maximize learning, while Q(s) is used to limit the bandwidth
to robustify the system and for other practical purposes.

B. Stability and Robustness

To simplify the problem from an ILC perspective and free
it of nonlinearities, we will design the ILC update law for
the reference model (2). Nevertheless, due to the fact that the
L1 controller aims to compensate for the system uncertainty
within the bandwidth of D(s), system uncertainty will still
exist. Dropping the subscript re f , the closed loop reference
system can be described in the s domain as

Xi(s) = H(s)Ui(s)+H(s)D(s)KgR(s)+G(s)θXi(s)+Xin(s),

where Xin(s), (sI−A)−1x0.
Assuming zero initial conditions, the reference model

dynamics for ILC are defined as

Yi(s) = P′(s)Ui(s)+P′(s)D(s)KgR(s), (9)

where P′(s),C(I−G(s)θ)−1H(s).
The L1 stability condition makes sure that (9) is stable

and (I−G(s)θ)−1 exists. Making use of the matrix identity
(I+ AB)−1 = I− A(I+ BA)−1B [15] we rewrite the plant
as P′(s) = P(s)W (s), where P(s) , CH(s); W (s) , 1 +

α∆(s) = 1
1−θG(s) ; and ∆(s), 1

α

θG(s)
1−θG(s) with α ∈R such that

‖∆(s)‖∞ < 1.

For the ILC update law (8), a sufficient condition for
monotonic robust stability, with γ being the convergence rate,
is

γ = max
θ T∈Θ

‖Q(s)(1−L(s)P(s)W (s))‖∞ < 1. (10)

The above condition ensures iteration domain stability of
the system by forcing Q(s)(1 − L(s)P(s)W (s)) to be a
contraction mapping and ensures ‖E∞(s)−E j+1(s)‖∞ ≤
γ‖E∞(s)−E j(s)‖∞. For causal Q(s) and L(s), this also
implies monotonic convergence under the L2 norm for any
finite duration system with rate γ; i.e. ‖e∞− e j+1‖L2 <
γ‖e∞− e j‖L2 .

Observe that θ , and naturally the phase of 1 −
L(s)P(s)W (s) are unknown; which makes (10) of no practical
value. A feasible condition that satisfies (10), however,can be
stated as

α ≤ γ−|Q( jω)||1−L( jω)P( jω)|
|Q( jω)||L( jω)||P( jω)|

. (11)

To find a tight lower bound on α and invoke (11), we rely
on the H∞ norm of G(s):

|θG( jω)| ≤ ‖θ T‖2‖G( jω)‖2 ≤ ε‖G(s)‖∞,

where ε , maxθ∈Θ ‖θ T‖2 = m
√

n. Note that ε‖G(s)‖∞ ≤
λ < 1. To see this, define the input-output pair u(t) ∈L2e

and x(t) =
[
x1(t) x2(t) . . . xn(t)

]T ∈L n
2e for the system

G(s). By definition, ‖gi‖L1 ≤ ‖G(s)‖L1 , where gi is the ith

element of the impulse response of G(s). Hence,

‖(xi)τ‖L2 ≤ ‖gi‖L1‖uτ‖L2 ≤ ‖G(s)‖L1‖uτ‖L2 .

A proof of the first inequality can be found in [16]. Thus,

‖xτ‖L2 =

[
n

∑
i=1
‖(xi)τ‖2

L2

]1/2

≤
√

n‖G(s)‖L1‖uτ‖L2 . (12)

Since ‖G(s)‖∞ is the L2 norm of the system, (12) implies

‖G(s)‖∞ ≤
√

n‖G(s)‖L1 . (13)

It follows from (13) and (1) that ε‖G(s)‖∞ ≤ λ < 1. Conse-
quently α > ε‖G(s)‖∞

1−ε‖G(s)‖∞ .
Assuming a stable update law, the iteration domain equi-

librium can be expressed as

U∞(s) =
Q(s)L(s)

1−Q(s)(1−L(s)P(s)W (s)) (1−F(s))R(s),

E∞(s) =
1−Q(s)

1−Q(s)(1−L(s)P(s)W (s)) (1−F(s))R(s),

where F(s) , P′(s)D(s)Kg. The complete L1-ILC scheme
can be seen in fig. 1. We refer the readers to [1] for further
details on frequency domain ILC design methods.

IV. DESIGN TRADE-OFFS

To examine the trade-offs between iteration and time
domain properties we will make use of the following in-
equalities:

|W ( jω)| ≥ 1
|1−θH( jω)|+ |D( jω)||θH( jω)|

.
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Fig. 2: Effect of feedback bandwidth on ILC performance
with K = 0.80

γ

|Q( jω)|
≥ |1−|L( jω)P( jω)W ( jω)||.

It follows directly that

|L( jω)||P( jω)| ≤
(

γ

|Q( jω)|
+1
)

× (|1−θH( jω)|+ |D( jω)||θH( jω)|).

Both D(s) and Q(s) describe the performance-robustness
trade-offs in their respective domains. Thus, generally speak-
ing, we can deduce the following design trade-offs:

1) Increasing the bandwidth of D(s) decreases the mini-
mum γ that satisfies (11), i.e. better iteration domain
transients. Indirectly, a higher bandwidth also results
in better iteration domain robustness, thereby leaving
the possibility of higher gain Q filters for enhanced
performance: As the L1 filter bandwidth increases,
the minimum γ in (11) becomes bounded further
away from 1 and naturally, α decreases since G(s),
H(s)(1−D(s)). As a result, the designer can tune Q(s)
to increase its bandwidth and minimize the converged
error.

2) Decreasing the bandwidth of Q(s) decreases the min-
imum allowable γ that would satisfy (11), which
signifies increased iteration domain robustness. This
further implies that one can use a lower gain D(s) for a

feedback system with better stability margins: Because
Q(s) has a lower gain, there exists a higher value of
α satisfying (11) for the original value of γ .

It thus makes sense to summarize the design trade-offs for
the combined adaptive-learning controller as that of perfor-
mance versus robustness. Intuitively, this is to be expected
as increasing the passband of D(s) decreases parametric
uncertainty as W (s) = [1−θH(s)(1−D(s))]−1, which is the
desired result from an ILC perspective.

V. SIMULATION RESULTS

To illustrate the effects of D(s) and Q(s) on system
performance and gain further insight into the controller, we
consider the plant

A =

[
0 1
−1 −1.4

]
,B =

[
0
1

]
,C =

[
1 0

]
,

and let Θ =
{

v ∈ R2 : ‖v‖∞ ≤ 5
}

[12]. The ILC update law
is defined in the frequency domain as (8) with Q(s) = K 50

s+50
and L(s) = 2.8s. The DC gain of Q(s) is used to robustify
the update law for plant uncertainties due to the first order
low-pass filter D(s) and the uncertain parameter θ . For the
sake of demonstration, θ =

[
4 −4.5

]
in fig. 2 and fig. 3.

Note that the open loop plant is unstable when θ is chosen as
such. In the implementation of the adaptation law, we choose
Γ = 1×106. For the state predictor, we let Ksp = 0.

Fig. 2 shows the effect of D(s) on iteration domain perfor-
mance where the performance metric is the L2 norm of the
error. Here, the nonunity DC gain of 0.80 ensures iteration
domain stability for L1 cutoff frequencies (ωc) higher than
75 rad/s. For the cutoff frequencies 75, 100 and 500; the
lower bound on α is 0.117, 0.085 and 0.016, respectively.
Notice that as opposed to our findings in [11], a higher band-
width implies better performance; even though the difference
is minimal in this case. The effect of the bandwidths of
both filters can be seen in fig. 3: Lower converged errors
can be achieved by increasing the bandwidth of both filters,
albeit at the cost of slower transient behavior. Nonetheless,
performance enhancement comes with decreased stability
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margins; in a given system (A,B,C) with parameter θ time
delays and/or other unmodeled dynamics will always exist.

An important point of interest is the monotonicity of
the controller against varying values of θ . Due to the
complicated dynamics involved in the equilibrium signals
U∞(s) and E∞(s), it is difficult to come up with an analytical
form that tightly bounds the transients due to a change
in the parameter vector θ T , or that describes the differ-
ence in converged error values. These have been evaluated
numerically in fig. 4. Maximum and minimum values of
the converged error in the uncertainty set Θ have been
plotted versus ωc. Note that both curves converge asymp-
totically towards the same value as the bandwidth of D(s)
increases. The maximum difference in converged errors, i.e.
((maxθ T∈Θ ‖e∞‖L2/minθ T∈Θ ‖e∞‖L2)−1), is less than 7.6%
for ωc ≥ 100rad/s. As can be seen, increasing the cutoff fre-
quency of the filter even from 100 to 200 rad/s dramatically
increases the monotonicity of the controller, based on the
assumed difference between converged errors in response to
marginal values of θ . Iteration series of the system for the pa-
rameters θ0 =

[
0 0

]
, θ1 , [argminθ T∈Θ ‖e‖L2 ]

T =
[
5 5

]
and θ2 , [argmaxθ T∈Θ ‖e‖L2 ]

T =
[
−5 −5

]
are shown in

fig. 5. Despite the relatively low bandwidth of D(s) (ωc = 100
rad/s), the iteration dynamics for all parameters are highly
similar. The L2 error norms for θ1 (0.117) and θ2 (0.186),

which correspond to a 7.5% difference, are equal to the
values in fig. 4, albeit the infinite horizon assumption of s
domain analysis.

An equally significant property of the controller is its
response to abrupt changes in the uncertain parameter. The
superiority of the nonaugmented L1 feedback based ILC
over another ILC architecture with linear quadratic regulation
(LQR) and integral control was previously shown in [11].
Transients of the system when the uncertain parameter is
changed from θ1 to θ2, as quantified by the percentage devia-
tion from the converged error when θ = θ1, is shown in fig. 6.
While the approximately 42.0% transient for ωc = 100rad/s
may seem large at first glance, it is worth noting that system
transients were shown to be much larger in a comparable
case for the LQR-Integral controller. Furthermore, similar to
the trend in fig. 4, additional reduction in transients can be
achieved by increasing the bandwidth of the L1 filter.

Finally, fig. 7 presents a scenario where the initial param-
eter θ0 is changed to θ1 at the 11th iteration and to θ2 at the
51st iteration. In spite of the noticeable transients at these
points, the system remains fairly stable and goes back to
equilibrium in a couple of iterations. A transient of 42.4%
at the 51st iteration verifies the claims in fig. 6, while the
converged error metrics for θ1 and θ2 are the same as those
in fig. 4 and fig. 5.

VI. CONCLUSIONS

In this paper, we presented a rigorous stability analysis and
performance evaluation of the iterative learning controller
with the modified L1 adaptive feedback controller. A sim-
ple robust stability condition that generalizes our previous
stability analysis to L1 filters of arbitrary bandwidth was
given. Performance trade-offs between time and iteration
domains were examined and numerically evaluated. Our
findings indicate that the augmentation of the L1 controller
with the feedforward input results in an overall controller that
focuses on minimizing the reference tracking error. The de-
sign trade-off thus simplifies to the performance-robustness
trade-off that can be seen in the respective domains of
both controllers. Monotonicity of the controller makes it a
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promising performance enhancement scheme for applications
with large parametric uncertainties.

Future work includes extending the results to the output
feedback case and multiple-input multiple-output (MIMO)
LTI systems, along with experimental verification of the
proposed architecture.
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