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Abstract— Iterative learning control (ILC) has long been
recognized as an efficient way of improving the tracking
performance of repetitive systems. While ILC can offer sig-
nificant improvement to the transient response of complex
dynamical systems, the fundamental assumption of iteration
invariance of the process limits potential applications. Utilizing
abstract Banach spaces as our problem setting, we develop a
general approach that is applicable to the various frameworks
encountered in ILC. Our main result is that robust invariant
update laws lead to stable behavior in ILC systems, where
iteration varying systems converge to bounded neighborhoods
of their nominal counterparts when uncertainties are bounded.
Furthermore, if the uncertainties are convergent along the iter-
ation axis, convergence to the nominal case can be guaranteed.

I. INTRODUCTION

Ever since Arimoto’s 1984 paper [1], iterative learning
control (ILC) has been recognized as an efficient way of im-
proving the tracking performance of repetitive systems. ILC
can offer significant improvement to the transient response of
complex dynamical systems with a high level of uncertainty
through very simple algorithms [2], [3]. Traditionally, the
fundamental assumption of ILC has been iteration invariance
of the: 1) plant dynamics, 2) exogenous disturbances, 3)
initial conditions, and 4) reference. This assumption greatly
simplifies the ILC problem and enables the control engineer
to design a stable recurrence in the iteration domain by em-
ploying a contraction mapping. Even though this assumption
is highly unrealistic, similar to feedback control of linear
time invariant systems, it yields good results in practice
provided that the variation of the process parameters from
trial to trial is small.

Nevertheless, to realize the full potential of “learning” con-
trol, it is imperative that the fundamental invariance assump-
tion is relaxed: In practice, initial conditions and disturbances
are always subject to variations, while references and plants
can commonly appear as outputs of higher order internal
models (HOIMs) in the context of robotic manipulators
doing different tasks, or freeway traffic models [4]. One of
the earliest efforts to analyze iteration varying systems is
presented in [5], although the analysis is far from complete.
Since then, several other works have tackled the case of
iteration varying references [6] and noise [7]. Of particular
mention is [8], where the authors have developed a HOIM
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based learning law using the w transform introduced in [9]
to tackle iteration varying references and plants.

Recently, the robust ILC problem for linear discrete time
(LDT) systems with uncertain state matrices was considered
in [10]. The authors show in [10] that if a time and iteration
varying learning matrix can be designed to ensure contrac-
tions over finite iteration intervals, the system converges to a
neighborhood of 0 provided the state matrices are bounded.
While the results of this paper are theoretically important,
the analysis is constrained to discrete time systems in state
space form. Additionally, the authors make no comments
on how this learning matrix can be designed when the sole
information on the uncertainty is boundedness. With these
issues in mind, in this paper we consider the robust ILC
problem of iteration varying linear systems in an abstract
setting. Our main result is that if the uncertainties are within
a bounded neighborhood of a nominal system, the system
signals converge to a bounded neighborhood of their nominal
counterparts as long as the first order update law is robustly
monotonically convergent over all uncertain plants, which
can be designed using existing methods from the literature.

The remainder of the manuscript is organized as follows:
Section II introduces certain preliminaries and the ILC prob-
lem. Section III proves the basic boundedness result of the
algorithm. Sec IV introduces a nominal system to facilitate
further analysis and shows that the choice of initial input does
not affect the system in the limit. Section V compares the
limiting performance of the algorithm to the nominal case;
the effect of the design choices on the limiting performance
is studied in section VI. Section VII discusses how the so
called Q filter in linear ILC affects system performance in
the iteration invariant and varying cases. Finally, concluding
remarks are given in section VIII.

II. PROBLEM FORMULATION

Let H : U → Y be a mapping where U is the space of
admissible inputs and Y is the space of outputs. Assuming
that H is known and there are no exogenous inputs affecting
the output, the classical ILC problem can be stated as
that of finding a controller C that maps the input his-
tory u0, u1, . . . , uk−1 ∈ U to the current input uk ∈ U such
that the output yk = Huk converges to a desired reference r
in the image of H , or a small neighborhood of it, as k →∞.
In most cases, C is designed to consider only the previous
iteration, thus giving rise to the name first order ILC.

For our problem, we will assume U and Y to be Ba-
nach spaces equipped with suitable norms. We base this
assumption on the fact that Banach spaces are the natural



settings of contraction mapping based ILC, which relies on
the celebrated Banach fixed point theorem. Furthermore, Lp
and lp spaces, which provide the standard framework in time
driven dynamic systems, are well known to be complete
normed spaces. The motivation for this assumption is to
come up with a general framework that contains the variety
of different settings in ILC, consistent with the approach
in [3].

A. Notation and Preliminaries

We take N to represent the set of nonnegative integers.
We denote by B(U ,Y) the space of all bounded linear
operators from U to Y . We use ‖.‖ to denote vector and
induced operator norms in the relevant spaces. For a family
of operators indexed by a subset of N, we use the product
notation to indicate the composition of the operators in
increasing order; e.g.

∏k
i=j Hi , HkHk−1 . . . Hj for j ≤ k

and
∏k
i=j Hi , I for j > k, where I is the identity operator.

For a rigorous study of the convergence and stability of
the iterative problem, we define the spaces Uω ,

∏
k∈N U

and Yω ,
∏
k∈N Y . An element x in these spaces will be

defined so that xk denotes the kth coordinate. Alternatively,
we define x to be a mapping from N to U or Y . Throughout
the rest of the manuscript we will use this notation to
refer to any sequence of objects in the same space, e.g.
x , (x0, x1, . . . ) where each xk can be an element of U , Y ,
or an operator in these spaces. In addition, we introduce the
following, where the spaces X and V are in {U ,Y}.

Definition 1: Let x be an element of Xω . The norm of x
is given by ‖x‖ , supk∈N ‖xk‖.

Definition 2: A linear mapping H : Xω → Vω is called
bounded-input bounded-output (BIBO) stable if there exists
a finite constant α such that

‖(Hx)κ‖ ≤ α‖(x)κ‖, ∀x ∈ Xω,∀κ ∈ N,

where (x)κ , (x0, x1, . . . , xκ, 0, 0, . . . ) is the truncation
of x.
Readers should note that Uω and Yω are not normed spaces
since our definition of the norm entails the possibility of
unbounded elements. However, this is merely a formality
and will not affect our analysis as any truncated vector in
these spaces has a finite norm. This is akin to the definition
of input-output stability via the extended space Lpe.

Definition 3: Let x, v ∈ Xω . We say that x converges to v
if limk→∞ ‖xk − vk‖ equals 0. If lim supk→∞ ‖xk − vk‖ is
bounded, we say x converges to a bounded neighborhood
of v.

Definition 4: Let Hk ∈ B(X ,X ). An iterative system
defined by the equality xk+1 = Hkxk for all k ∈ N is
asymptotically stable if there exists α such that ‖x‖ ≤ α‖x0‖
and x converges to 0 for all x0 ∈ X .

B. System Dynamics

Based on the above, we consider the following class of
systems

yk = Pkuk + dk, ∀k ∈ N, (1)

where yk ∈ Y is the output, uk ∈ U is the input, dk ∈ Y is
the exogenous signal that includes the feedback control re-
sponse, disturbance, noise, and the effect of initial conditions,
and Pk is the iteration varying linear input-output operator.
Moreover, we assume that each Pk is in the vicinity of a
known bounded linear operator P̄ as stated in the following:

Assumption 1: The input-output operators lie in a neigh-
borhood of P̄ . In other words, there exists a finite real
constant ρ such that

Pk ∈ P ,
{
H ∈ B(U ,Y) : ‖H − P̄‖ < ρ

}
, ∀k ∈ N.

The model we have described is fairly general and our
only limiting assumption is linearity. For instance, if we
assume a time dependent dynamical system, Pk can be time
invariant or varying. Input disturbances can be assumed to be
included in dk when mapped by Pk. Due to the assumption
that the process variables Pk and dk are varying along the
iteration axis, it is a straightforward matter to assume that
the reference is also subject to variations from trial to trial.
Thus, our objective is to find an ILC update law such that
the error vector e defined by ek , rk − yk for all k ∈ N,
where the reference rk is in the image of P̄ for all k ∈ N,
converges to a small neighborhood of 0. As with the plant
operators, we make a boundedness assumption on r.

Assumption 2: The reference vectors lie in a neighbor-
hood of a nominal reference r̄ in the image of P̄ . In other
words, there exists a finite real constant ζ such that

rk ∈ R ,
{
h ∈ P̄ (U) ⊂ Y : ‖h− r̄‖ < ζ

}
, ∀k ∈ N.

III. ROBUST INVARIANT UPDATE LAWS AND
STABILITY

Let
uk+1 = Quk + Lek, ∀k ∈ N, (2)

where Q and L are bounded linear operators, and u0 is
arbitrary. Furthermore, the update law is subject to the ro-
bustness assumption that guarantees monotonic convergence
in P when the system is iteration invariant, as stated below.

Assumption 3: There exists a real constant γ such that

‖Q− LH‖ ≤ γ < 1, ∀H ∈ P.
Substituting the system dynamics (1) into the update law (2)
yields the recurrence relation

uk+1 = Tkuk + Lηk, k ∈ N,

where Tk , Q− LPk and ηk , rk − dk. The solution of the
input vector in terms of u0 and ηk can then be given as

uk+1 =

(
k∏
i=0

Ti

)
u0 +

k∑
i=0

 k∏
j=i+1

Tj

Lηi, (3)

for all k ∈ N.
We are now ready to prove our first results, which say that

the recurrence relation on the input vector is asymptotically
and BIBO stable.

Proposition 1: The linear iterative system (3) with η = 0
is asymptotically stable.



Proof: Take arbitrary u0 ∈ U . Then from (3) we
have ‖uk+1‖ ≤ γk+1‖u0‖. Since γ < 1, it follows that u
converges to 0 and ‖u‖ ≤ ‖u0‖. Therefore, system (3) is
asymptotically stable.

Proposition 2: The linear iterative system (3) with input
η and u0 = 0 is BIBO stable.

Proof: Take arbitrary η ∈ Yω . Then from (3) we have

‖uκ+1‖ ≤
κ∑
i=0

γκ−i‖L‖‖(η)κ‖ =
1− γκ+1

1− γ
‖L‖‖(η)κ‖

≤ ‖L‖‖(η)κ‖
1− γ

≤ ‖L‖‖(η)κ+1‖
1− γ

, ∀κ ∈ N, (4)

where we use the fact that the truncated norm of η is mono-
tonically increasing by definition. Using the same property,
we can show by (4) that ‖(u)κ‖ ≤ ‖L‖‖(η)κ‖/(1− γ) for
all κ ∈ N. Therefore, system (3) is BIBO stable.

We showed that the iterative system (3) is asymptotically
and BIBO stable when the update law (2) is subject to the
robustness assumption 3. We finish this section with the
following theorem which show that u and y are bounded
if d is bounded.

Theorem 1: The signals u and y of the linear iterative
system 1 with the update law (2) is bounded if d is bounded.

Proof: Consider the solution (3) of the input u, which
is the superposition of the natural response describing the
asymptotic response to the initial condition u0 and the forced
response describing the input-output behavior due to η.
Since r is bounded by assumption 2, η is bounded if d is
bounded. From propositions 1 and 2, it follows that u is
bounded. Now observe that

‖yk‖ ≤ ‖Pk‖‖uk‖+ ‖dk‖ ≤ ‖Pk‖‖u‖+ ‖d‖, ∀k ∈ N,

by (1). Since P is uniformly bounded, it follows that y is
bounded.

IV. ASYMPTOTIC SYSTEM DYNAMICS

In the previous section we showed that the ILC system is
well posed when subject to the robustness assumption, in the
sense that bounded inputs produce bounded outputs for any
initial input. Furthermore, we saw that LDT methods apply
directly to the iteration varying system regardless of what U
and Y are. While there are more general conditions in finite
dimensional spaces, e.g. the joint spectral radius being less
than 1, the robustness condition of assumption 3 will suffice
for our case since it guarantees monotonic convergence for
iteration invariant systems.

We note that while boundedness of the signals are suffi-
cient to show that they converge to a bounded neighborhood
of 0, we would like to find tighter bounds if possible.
In particular, we would like to see how the performance
is affected when compared to iteration invariant systems.
One motivation for analyzing these systems in general as
opposed to systems that only converge to the origin is that
perfect tracking can be an infeasible objective for various
reasons. Hence, in this section, we show that the dynamics
of the ILC system can be approximated asymptotically by

an auxiliary system. Furthermore, we introduce a nominal
iterative system via the known operator P̄ and reference r̄
under the assumption that d = 0, and show that this
system can also be approximated by a nominal auxiliary
system. These will later facilitate our analysis of asymptotic
performance and will describe the “steady state” behavior of
the systems after the effects of the initial inputs vanish.

A. Actual System

The error dynamics of the actual system is given by the
relation

ek = −Pkuk + ηk, ∀k ∈ N.

Further, we introduce the auxiliary variables x and z

xk+1 ,
∑k
i=0

(∏k
j=i+1 Tj

)
Lηi,

zk , −Pkxk + ηk,
(5)

for all k ∈ N, where x0 is arbitrary. The auxiliary variables
define the asymptotic behavior of the system as shown in the
following results.

Proposition 3: The input u and the error e of the linear
iterative system described by (1) with the update law (2)
converge to x and z, respectively.

Proof: Subtracting x from u yields the natural response
of the input dynamics which converges to 0 since it is
asymptotically stable by proposition 1. Hence, u converges
to x. Similarly, subtracting z from e yields

ek − zk = −Pk(uk − xk), ∀k ∈ N,

which tends to 0 since P is uniformly bounded and u
converges to x. Therefore, e converges to z.

B. Nominal System

We define the nominal system to be the case where the
signal d = 0 and the plant Pk = P̄ for all k ∈ N. In other
words, we describe the nominal system as

ȳk = P̄ ūk, ∀k ∈ N,

where ȳk ∈ Y is the nominal output and ūk ∈ U is the
nominal input. Thus, the error dynamics of the nominal
system is given by the relation below, where η̄ , r̄:

ēk = −P̄ ūk + η̄, ∀k ∈ N.

We take the update law as ūk+1 = Qūk + Lēk with Q
and L the same as before. Further we introduce the nominal
auxiliary variables x̄ and z̄,

x̄k+1 ,
∑k
i=0

(∏k
j=i+1 T̄

)
Lη̄,

z̄k , −P̄ x̄k + η̄,
(6)

for all k ∈ N, where T̄ , Q− LP̄ and x̄0 is arbitrary.
Similar to the actual system, the signals define the asymptotic
behavior as given by the following result stated without
proof.

Proposition 4: The nominal input ū and error ē converge
to x̄ and z̄, respectively.



V. ASYMPTOTIC LEARNING PERFORMANCE

We will now analyze the performance of the algorithm (2)
on the ILC system. Towards that end, based on the results of
the previous section, we will compare the auxiliary systems
rewritten below in recursive form:

x̄k+1 = T̄ x̄k + Lη̄, ∀k ∈ N, (7)

xk+1 = Tkxk + Lηk, ∀k ∈ N, (8)

where x̄0 = x0 = 0. Furthermore we let

x̃k , x̄k − xk, η̃k , η̄ − ηk, r̃ , r̄ − rk,
T̃k , T̄ − Tk, P̃k , P̄ − Pk,

for all k ∈ N. We are now ready to show that the iteration
varying ILC system converges to a bounded neighborhood
of the nominal invariant system.

Theorem 2: Given a linear iterative system described
by (1) with the update law (2), if d is bounded, u and e
converge to a neighborhood of ū and ē, respectively.

Proof: By propositions 3 and 4, we know that u
and ū converge to x and x̄, respectively. Hence, it suf-
fices to prove that x converges to a bounded neighborhood
of x̄. Observe that T̃k = (Q− LP̄ )− (Q− LPk) = −LP̃k
and η̃k = r̄ − (rk − dk) = r̃k + dk, so by subtracting (8)
from (7) we arrive at

x̃k+1 = Tkx̃k − LP̃kx̄k + L(r̃k + dk), ∀k ∈ N.

By assumption 3

‖x̃k+1‖ ≤ γ‖x̃k‖+ ‖L‖(‖P̃k‖‖x̄k‖+ ‖r̃k‖+ ‖dk‖), (9)

for all k ∈ N. Now recall that x̄ represents the forced
response of the nominal input ū, which converges to a fixed
point x̄∞. Hence

lim sup
k→∞

‖x̃k‖ ≤ γ lim sup
k→∞

‖x̃k‖+ ‖L‖(ρ‖x̄∞‖+ ζ + ‖d‖),

for all k ∈ N. It follows that

lim sup
k→∞

‖x̃k‖ ≤ ‖L‖
ρ‖x̄∞‖+ ζ + ‖d‖

1− γ
. (10)

Therefore, u converges to a bounded neighborhood of ū.
Similarly, by propositions 3 and 4, we know that e and ē
converge to z and z̄, respectively. Thus, it will suffice to
prove that z converges to a bounded neighborhood of z̄.
Let z̃k , z̄k − zk for all k ∈ N. Subtracting z from z̄ by (5)
and (6) we have

z̃k = Pkx̃k − P̃kx̄k + r̃k + dk, ∀k ∈ N,

which leads to the inequality

‖z̃k‖ ≤ (‖P̄‖+‖P̃k‖)‖x̃k‖+‖P̃k‖‖x̄k‖+‖r̃k‖+‖dk‖, (11)

for all k ∈ N. From above, by substituting (10) it follows
that

lim sup
k→∞

‖z̃k‖ ≤
(
‖L‖‖P̄‖+ ρ

1− γ
+ 1

)
× (ρ‖x̄∞‖+ ζ + ‖d‖) . (12)

Therefore, e converges to a bounded neighborhood of ē.
Remark 1: Readers should note from the bounds in (10)

and (12) that the system converges to the nominal case when
the disturbance vanishes, and the uncertainty in the plant and
the reference tend to 0.

Furthermore, we show that if the input-output operator and
the reference converge to the nominal case, and d converges
to 0, the ILC system converges to the nominal invariant
system. In the following theorem, convergence of P to P̄ is
to be interpreted as limk→∞ ‖Pk − P̄‖ = 0 as in definition 3.

Theorem 3: Given a linear iterative system described
by (1) with the update law (2), if P converges to P̄ , r
converges to r̄, and d converges to 0, u and e converge to ū
and ē, respectively.

Proof: Consider (9). Then we have

lim sup
k→∞

‖x̃k‖ ≤ γ lim sup
k→∞

‖x̃k‖

+ ‖L‖ lim sup
k→∞

(
‖P̃k‖‖x̄k‖+ ‖r̃k‖+ ‖dk‖

)
,

which by the convergence assumptions on P , r and d
implies lim supk→∞ ‖x̃k‖ ≤ γ lim supk→∞ ‖x̃k‖. The fact
that the norm is positive semidefinite and γ ∈ [0, 1) neces-
sitates that lim supk→∞ ‖x̃k‖ = 0. Thus, x converges to x̄.
Similarly, by (11) we have

lim sup
k→∞

‖z̃k‖ ≤
(
‖P̄‖+ ρ

)
lim sup
k→∞

‖x̃k‖

+ lim sup
k→∞

(
‖P̃k‖‖x̄‖+ ‖r̃k‖+ ‖dk‖

)
.

The convergence assumptions on the uncertain terms imply
that the right hand side of the inequality tends to 0. Thus, z
converges to z̄. Therefore, by propositions 3 and 4, u and e
converge to ū and ē, respectively.

Remark 2: The existence of the limit superiors in the
above analyses are guaranteed by the boundedness of the
sequences by virtue of the monotone convergence theorem.
In theorem 3, convergence of the uncertain terms imply their
boundedness, hence x̃ is bounded.

Remark 3: Note that as opposed to [10], the convergence
conditions are more relaxed since we do not require P , r, d
to converge exponentially.

It is of course possible to carry out the same analysis
without the auxiliary signals x and z. By using x and z,
we would like to emphasize the fact that much like in linear
time invariant systems or iteration invariant ILC systems, the
initial condition has no effect in the limit.

VI. DESIGN CHOICES

In this section we briefly discuss how the design choices
of L and γ affect system performance. In particular, we see
that faster convergence is desired to minimize the variance
of the system, along with lower gains on L.



A. Convergence Speed

As in the iteration invariant case, it is trivial to see that γ is
a measure of the convergence speed of the algorithm: Recall
from section IV that the input and error converge to the
auxiliary variables that describe the “steady state” response
(or forced response) of the ILC system. Furthermore, we
saw in section III that the effect of the initial input vanishes
exponentially with rate − ln γ. Similarly, the various bounds
throughout the paper can be shown to be attained with the
same rate. Hence, lower values of γ correspond to a fast
convergence to the forced response of the system, and vice
versa.

B. Limiting Performance

We turn our attention to the asymptotic performance of
the system. Noting again that x̄ and z̄ represent the forced
response of the nominal system, by the proof of proposition 2
the bound ‖x̄∞‖ ≤ ‖L‖‖r̄‖/(1 − γ) holds. Thus, ‖x̄∞‖
increases as ‖L‖ and/or γ increases. Further, we see the same
relationship in (10) and (12). Therefore, the system converges
to the nominal case as the gain of L and/or the convergence
factor γ is decreased.

VII. ASIDE ON THE Q FILTER

In the previous section, we analyzed how the design
choices of L and γ affect system performance. It seems
that in general, a controller with low gains on L and a
fast convergence (i.e. a low γ) is desired to obtain good
asymptotic performance. So to achieve the lowest deviation
from the nominal case, one should minimize ‖L‖/(1 − γ).
However, the relationship between L and γ is still unclear.
Similarly, how the choice of Q affects the convergence
factor γ is yet to be explained.

A typical algorithm in the literature is the Q filter and
learning function approach, where

uk+1 = Q(uk + L̄ek), ∀k ∈ N. (13)

This algorithm can be seen as a special case of the linear
algorithm (2) with L = QL̄1. This formulation has some
advantages over the more general algorithm presented in
the manuscript. For instance, the robustness condition of
assumption 3 can be satisfied in any normed space by
decreasing the gain of Q via the submultiplicativity of
the induced norm. The algorithm is popular especially in
frequency domain designs where well established heuristics
describe the performance versus robustness trade-off im-
posed by Q [12], [13]. In other words, this approach enables
an easy way to control the convergence factor γ. We discuss
how zero error in the limit can be guaranteed, and how the Q
filter affects performance when L can be factored as QL̄.

1It is shown in [11] that for the finite dimensional case the two algorithms
are equivalent when designed by the norm optimal method.

A. Driving the Error to the Origin

It is well known that for a monotonically convergent linear
algorithm where U = Y is the Cartesian product of R or H2,
the converged error equals 0 for every reference if and only
if Q = I . We discuss a generalization of this theorem below.

Theorem 4: Given r̄ ∈ Y , let ē∞ be the converged error
of the nominal system. Define U1 as the eigenspace of Q
corresponding to an eigenvalue of 1. Then, ē∞ = 0 if and
only if there exists ū∗ ∈ U1 in the preimage of r̄. Moreover,
if such a ū∗ exists, it is unique and equal to the converged
input ū∞.

Proof: Let ū∞ be the converged input of the system.
Direct computation shows that

(I −Q)ū∞ = L(r̄ − P̄ ū∞) = Lē∞,

hence ē∞ = 0 if and only if ū∞ lies in U1 ∩ P̄−1r̄.
Furthermore, the contraction mapping theorem states that ū∞
must be the unique fixed point of the update law, eliminating
the possibility that U1∩P̄−1r has more than a single element.

Consequently, P̄ and LP̄ are nonsingular or equivalently
injective in U1: If this was false, there would be an element ū
such that ‖(Q− LP̄ )ū‖ = ‖ū‖, contradicting ‖Q− LP̄‖ <
1. Note that for a bijective map the condition to ensure zero
error for all references simplifies to Q = I as expected.
This generalization is interesting as it relates to operators
that are not necessarily bijective. A necessary and sufficient
condition for converging to arbitrary references in Y via the
contraction mapping based update is to find a subspace U1 ⊆
U such that Q|U1 is the identity and P̄ (U1) = Y; which
necessitates that P̄ |U1 and LP̄ |U1 are bijective. For instance,
for a redundant system, this means that Q cannot be the
identity map. An example follows below.

Example 1: Consider R2 and R equipped with the sup
norm. Let P̄ =

[
1 1

]
. Take

Q =

[
1 1
0 0

]
, L =

[
1
1
4

]
,

which yields ‖T̄‖∞ = 1/2. From (7), it is straightforward to
check that for any r̄ 6= 0, ū∞ = r̄

[
1 0

]T
attains ē∞ = 0

and is the eigenvector of Q corresponding to the eigen-
value 1. It is also easy to verify that when Q = I , the spectral
radius of T̄ is bounded below by 1; i.e. the contraction
condition can never be satisfied for any norm since P̄ is
not injective.

For a nonsurjective map, the best we can hope is to achieve
zero error for references in the image of P̄ . If the map is
injective, Q must necessarily be the identity and we can
conveniently select L as a left inverse of P̄ .

Example 2: Consider R and R2 equipped with the 2 norm.
Let P̄ =

[
1 1

]T
. Take Q = 1 and L =

[
1/2 1/2

]
, the

Moore-Penrose pseudoinverse of P̄ , which leads to T̄ = 0.
From (7), ū∞ = Lr̄ attains arg minū∈R ‖r̄ − P̄ ū‖2 in a
single trial which obviously equals 0 if and only if r̄ is in
the range space of P̄ .



Henceforth, we will refer to monotonically convergent
algorithms that guarantee 0 error for references in the image
of P̄ as iterative integrators.

B. Using the Q Filter to Achieve Robustness

We consider the case when L can be factored as QL̄. A
necessary and sufficient condition for the existence of such
a factorization is that L(Y) ⊆ Q(U). Two cases of interest
are discussed:

1) Iterative Integrators: The condition for the QL̄ fac-
torization is trivially satisfied when P̄ is injective as this re-
quires Q = I . In this case, algorithms (2) and (13) are equiv-
alent with L̄ = L. If the image of L is contained in U1

2, U1

can be shown to be an invariant subspace of the nominal
system. With this assumption, generally speaking, we can
assume L̄ = L for an iterative integrator. Therefore, for these
algorithms, the worst case deviation from the nominal system
in the limit can be described by substituting ‖x̄∞‖ = 0
to (10) and (12), with no observable guidelines on how to
optimize performance: The minimization of ‖L‖/(1− γ) is
the key to low variance and will be specific to each problem.

2) Nonzero Asymptotic Errors: We discuss the more
general case where U1 = {0}, assuming without loss of
generality that the following condition holds:

γ = sup
H∈P

‖Q(I − L̄H)‖ ≤ ‖Q‖ sup
H∈P

‖I − L̄H‖ < 1.

The robustifying effect of the Q filter in algorithm (13) can
be seen in the above equation: By decreasing the gain of Q,
γ can be rendered arbitrarily small to satisfy the contraction
condition. Moreover, if we let γ̄ , supH∈P ‖I − L̄H‖, then
the following inequality is valid since L = QL̄:

‖L‖
1− γ

≤ ‖Q‖‖L̄‖
1− ‖Q‖γ̄

.

Hence the performance measure ‖L‖/(1 − γ) can be de-
creased by decreasing ‖Q‖. It turns out that variance of the
iteration varying system can be controlled by the gain of Q,
with decreasing gains signifying decreasing variance.

VIII. CONCLUSIONS

In this paper, we scrutinized the stability and convergence
properties of ILC systems subject to trial to trial uncertainty.
We formulated the system to be controlled as a linear input-
output map in an abstract Banach space setting to ensure the
generality of our analysis, assuming bounded uncertainties in
all process parameters; including the input-output operator,
the feedback response, reference, noise, disturbance and
initial conditions. We showed that when a linear update law
is designed to be robust over the set of possible maps P ,
LDT methods can be employed directly to show the system
exhibits desirable properties such as asymptotic stability and
boundedness. Furthermore, we discussed how the design of
the operators Q and L affects the convergence properties

2An easy way of ensuring this is composing L with a projection operator
with kernel U0 so that U = U1 ⊕ U0. If Q is also chosen as this projection,
then the algorithm would converge to U1 in a single step.

of iteration varying systems. We showed that an iteration
varying system converges to 1) a bounded neighborhood of
a nominal system if the uncertainties are bounded, and, 2)
the nominal system itself if the uncertainties are convergent.

It turns out that robust ILC methods, which are well
studied in the literature [13], [14], [15], [16] (see also
the references in [17]), can be applied directly to iteration
varying systems. The results are quite strong in terms of their
generality and the lack of limiting assumptions apart from
boundedness and linearity. We expect these initial results to
pave the way for increased application diversity of ILC with
relaxed assumptions, along with the supporting theory.
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