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ROHRS’ EXAMPLE REVISITED: ON THE ROBUSTNESS OF

ADAPTIVE ITERATIVE LEARNING CONTROL

Berk Altın and Kira Barton

ABSTRACT

Adaptive feedback based methods in iterative learning control (ILC)
have garnered much interest from researchers for some time now. Much as
in adaptive feedback control, most of these methods use Lyapunov functions
and positive real transfer functions to prove convergence and boundedness of
system signals updated through iterative estimation. While Rohrs et al. have
motivated further research on the design of robust adaptive feedback controllers
by demonstrating in the early 1980’s that the algorithms of the time were
not robust in the presence of unmodeled dynamics, the topic of robustness
has not been studied much in the adaptive iterative learning control (AILC)
literature. Inspired by Rohrs’ counterexample, we use a model reference AILC
scheme to show the lack of robustness to unmodeled dynamics in AILC.
We rigorously define the concept of stability in ILC via L2 space concepts,
and demonstrate the existence of unstable learning operators. We put forth
linear systems arguments to explain how conditions leading to instability can
occur, and support heuristic arguments with simulation examples. Our findings
indicate that the shortcomings of AILC in terms of robustness are no different
than those of adaptive feedback, with the robustness issue more severe with
certain cases, and further research is necessary to design robust AILC schemes.

Key Words: Robustness, learning control, iterative methods, adaptive control,
model reference adaptive control.

I. INTRODUCTION

Adaptive methods in iterative learning control
(ILC) have been a popular area of research in recent

Manuscript received April 26, 2017.
Berk Altın is with the Department of Computer Engineering,

University of California, Santa Cruz, CA, 95064, USA (e-mail:
berkaltin@ucsc.edu).
Kira Barton is with the Department of Mechanical Engineering,
University of Michigan, Ann Arbor, MI, 48109, USA (e-mail:
bartonkl@umich.edu).

The authors would like to thank Enric Xargay for his helpful
comments on an earlier draft of the manuscript.
This work was conducted while the first author was with the
Department of Electrical Engineering and Computer Science at
the University of Michigan, and supported by the NSF grant
CMMI-1334204.
†Please ensure that you use the most up to date class file, available

from the ASJC Home Page at
www3.interscience.wiley.com/journal/117933310/home

years [1]. The main idea is simple, given an uncertain
system working on a finite interval repetitively, use
estimation schemes in adaptive feedback to iteratively
update the input so the control objective is achieved.
Much as in adaptive feedback control, most of these
methods employ techniques such as the construction
of Lyapunov functions and positive real transfer
functions to prove convergence and boundedness of
the system signals. Special attention has been given to
the application area of robotic manipulators, wherein
iterative estimation schemes are employed through
energy functions [22, 20] for improved transient
response under parametric uncertainty. Related schemes
were also used to reduce the trajectory tracking errors
in model reference adaptive control (MRAC) [22,
11, 12]. The similarities between adaptive feedback
and adaptive iterative learning control (AILC) were
further underlined in other works, which have sought to
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show how adaptive feedback schemes can be extended
straightforwardly to ILC to obtain universal learning
controllers [14, 15, 18].∗

In the early 1980’s, Rohrs et al. demonstrated in
their benchmark paper [19] that the adaptive feedback
control algorithms of the time were not robust in the
presence of unmodeled dynamics. Although it was
later argued that the explanation of the instability
observed was not adequate [3, 5, 6], the example
constructed in the paper generated much controversy
and spurred further research on the design of robust
adaptive controllers [17]. Interestingly, despite the
prominence of AILC and its similarities with adaptive
feedback control, robustness of adaptive iterative
learning controllers has not attracted the same level of
attention, and is an open question [25]. While several
works [23, 10, 24, 26] have referred to the concept of
“robustness” in AILC, there have been no studies in the
literature that tackle the issue of robustness explicitly
and in a direct manner. This motivates the question of
whether AILC offers benefits in terms of robustness
over adaptive feedback, or if it has the same drawbacks
as in the feedback case.

Inspired by this question, in this paper, we use
the model reference adaptive ILC (MRAILC) scheme
of [21] to demonstrate the lack of robustness of AILC
to unmodeled dynamics. The MRAILC scheme of [21]
for systems with relative degree 1 is a direct extension
of the basic MRAC scheme scrutinized in Rohrs’
counterexample, and is therefore a good avenue to
explore the convergence properties of AILC in the
presence of unmodeled dynamics. Our aim is not to
disprove the validity of a specific algorithm, but rather
point out through a case study in the spirit of Rohrs’
counterexample that AILC is likely to suffer from the
same robustness issues as those of adaptive feedback
control.

The rest of the paper is organized as follows.
Section II generalizes certain function space concepts
for ILC systems, followed by a summary of an
MRAILC algorithm for systems with relative degree 1
in Section III. The instability of the learning operators
of the algorithm are proven in Section IV, with a
short discussion of the main assumptions in Section V.
We give heuristic linear systems arguments to discuss
possible mechanisms of instability and how they can
come to occur in Section VI. Simulation results of
Section VII are presented to support our arguments, and
concluding remarks are given in Section VIII.

∗Due to space limitations and the fact that the focus of the current
work is adaptive ILC, we refer the readers to the surveys [1, 7, 25] for
a review of recent contributions to the ILC literature.

II. NOTATION AND PRELIMINARIES

We denote by R the set of real numbers. We
take N as the set of nonnegative integers and N+ as the
set of positive integers. The space Ln2 is the space of
piecewise continuous functions f : R→ Rn with finite
norm; i.e.

‖f‖L2
,

(∫ ∞
−∞
‖f(t)‖22dt

)1/2

<∞,

where ‖.‖2 is the Euclidean norm. Similarly, l2 denotes
the space of square summable real sequences.

Let P : U → Y be a mapping where U is the space
of admissible inputs and Y is the space of outputs. The
standard ILC problem is that of finding a controller C
that maps the input history u0, u1, . . . , uk−1 ∈ U to the
current input uk ∈ U such that the output yk = Puk
converges to a desired reference yd in the image of P ,
or a small neighborhood of it, as k →∞†. The fact that
the map C has the domain

∏
k∈N U and range

∏
k∈N Y

shows the multidimensionality of the problem setting.
In our case, U and Y will be L2 spaces of different
dimensions on a finite interval. Hence, a signal f will be
defined as a function that maps a given iteration k and a
time t to an n dimensional real vector. This motivates
us to define the concepts of stability and gain for
mappings such as C. We introduce several definitions
to rigorously formulate these for ILC systems.

Definition 1 (Ll2 Space) Lln2 is the space of all func-
tion sequences f = (f0, f1, . . . ) where fk : R→ Rn is
piecewise continuous for all k ∈ N and the Ll2 norm
of f given by

‖f‖Ll2 ,

( ∞∑
k=0

‖fk‖2L2

)1/2

,

is finite.

Definition 2 (Extended Ll2 Space) The extended
space Lln2e is the space of all f such that (f)κ ∈ Lln2
for all κ ∈ N, where

(f)κ , (f0, f1, . . . , fk, 0, 0, . . . ),

is the truncation of f .

†Here, we are assuming that P is known and there are no exogenous
inputs affecting the error, so that any function of the error can be
transformed into a function of the input by substituting yd − Puk .
Thus, it is sufficient to consider the sequence of inputs.
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The idea of the extended space as defined above
may seem redundant due to the discrete nature
of the problem setting as a sequence f ∈ Ll2e if
and only if every fk ∈ L2. Moreover, if each fk
has bounded support, the condition is automatically
satisfied. Nevertheless, it will enable us to focus on the
convergence properties of the iterative problem rather
than time domain dynamics.

Definition 3 (Finite Gain Ll2 Stability) A
mapping P : Llm2e → Lln2e is finite gain Ll2 stable
if there exist finite constants α and β such that

‖(Pu)κ‖Ll2 ≤ α‖(u)κ‖Ll2 + β, ∀u ∈ Llm2e,∀κ ∈ N.

Otherwise, P is said to have infinite gain or to be
unstable.

In addition to the above, we will also say
that f is bounded if there exists a finite constant M
such that ‖fk(t)‖∞ ≤M for all k ∈ N and t ∈ R,
where ‖.‖∞ is the sup norm, and unbounded otherwise.
The definitions above are natural generalizations of
the classical L2 space concepts to iterative signals:
If ‖f‖Ll2 = ε, f has a total energy of ε2. We
have chosen the notation Ll2 to reflect the two
dimensional nature of iterative signals as each fk ∈ L2

and (‖f0‖L2
, ‖f1‖L2

, . . . ) is an l2 sequence. For our
discussion, we will assume that each signal fk has the
same bounded support, namely the finite interval [0, T ]
as per the ILC assumption. Note that the truncation
operator is defined on the iteration domain since we are
interested in this axis.

Finally, let (E1, E2, . . . , En) be the standard basis
of Rn. We say that f ∈ Lln2e has an iteration-invariant
component if there exist m ∈ {1, 2, . . . , n} such that

E>mfk(t) = E>mfk+1(t), ∀k ∈ N, t ∈ [0, T ]. (1)

Furthermore, the sequence f̃ := (f̃0, f̃1, . . . ),
where f̃k(t) := E>mfk(t) for all k ∈ N and t ∈ [0, T ],
is called an iteration-invariant component of f . With
some abuse of notation, we will also denote by f̃
the function f̃0. Similarly, we say that f is iteration-
invariant if (1) holds for all m ∈ {1, 2, . . . , n}.

III. PROBLEM SETUP

In this section, we introduce the MRAILC
algorithm of [21] for plants with relative degree 1. We
will limit the discussion to this algorithm for simplicity
and consistency with Rohrs’ example. The algorithm
is a direct extension of the standard unnormalized

G(s)

Ξ(s) GM(s)

×Γ

q−1

.

yk

dk

−

yd

r
Ωk

ek
θk−1

θk

uk

Fig. 1. Block diagram of the MRAILC agorithm with the forward trial-
shift operator q, where it is assumed that p∗ > 0, and “.” denotes
the dot product. The filter Ξ(s) depends on a Hurwitz polynomial
of choice.

MRAC algorithm for plants with relative degree 1. In
addition, we will introduce the error model structure of
the algorithm, which will be used later to argue how
instability can arise.

3.1. The MRAILC Algorithm for Relative Degree 1
Systems

Consider a nominal single-input single-
output (SISO) linear time-invariant (LTI) minimum
phase plant

GP(s) = gP
ZP(s)

RP(s)
,

relative degree 1, where gP ∈ R\{0} is the high-
frequency gain, and ZP(s) and RM(s) are monic
polynomials. The nominal plant GP(s) is unknown, but
it is assumed that an upper bound n on the degree
of RP(s) and the sign of gP is known. Similarly,
consider a SISO LTI strictly positive real (SPR)
reference model

GM(s) = gM
ZM(s)

RM(s)
,

where gM ∈ R\{0} is the high-frequency gain,
and ZM(s) and RM(s) are monic Hurwitz polynomials
with degree less than n. The reference model GM(s)
has the same relative degree (1) as that of GP(s),
and can be designed to ensure desired closed-loop
dynamics. The control law of the algorithm is given by

uk(t) = θ>k (t)Ωk(t), ∀k ∈ N, t ∈ [0, T ], (2)

where θk(t) ∈ R2n is the output of the parametric
adaptation law, and Ωk(t) ∈ R2n is the vector of
measured variables containing the reference r(t) ∈ R,
along with filtered copies of the input uk(t) ∈ R and
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output yk(t) ∈ R. Specifically, using the standard mixed
notation, the regressor Ωk(t) is given as

Ωk(t) =


α(s)

Λ0(s)ZM(s) [uk(t)]
α(s)

Λ0(s)ZM(s) [yk(t)]

yk(t)
r(t)

 ∀k ∈ N, t ∈ [0, T ],

where α(s) =
[
sn−2 sn−3 . . . 1

]>
if n ≥ 2,

and α(s) = 0 if n = 1, and Λ0(s) is an arbitrary
polynomial such that Λ0(s)ZM(s) is a Hurwitz
polynomial of degree n− 1. The adaptation law is
defined as

θ̇0(t) = ΓΩ0(t)e0(t) sgn (p∗),
θk(t) = θk−1(t) + ΓΩk(t)ek(t) sgn (p∗),

(3)

for all k ∈ N+ and t ∈ [0, T ], where Γ ∈ R2n×2n is
the symmetric positive definite adaptation gain
matrix, ek(t) , yd(t)− yk(t) is the output tracking
error with yd(t) ∈ R the desired trajectory at time t,
and the constant p∗ = gP/gM is the ratio of the high-
frequency gains of the nominal open loop plant and
the reference model. Note that for k = 0, the input and
the controller parameter vector are computed using the
standard MRAC algorithm over the finite time interval.
The dynamics of the MRAILC algorithm in the iteration
domain with the uncertain open-loop plant G(s), under
the influence of external disturbances, is shown in
Figure 1, where it is assumed that p∗ > 0. Without loss
of generality, in the sequel, we suppose p∗ > 0.

3.2. Error Model Structure of the Algorithm
The error signal of the classical MRAC algorithm

for relative degree 1 plants is given by

e(t) = (G∗(s)−GM(s))[r(t)] +G∗(s)

[
θ̃>(t)Ω(t)

θ∗r

]
,

for all t ∈ [0, T ]. We denote by θ∗ ∈ R2n the constant
vector that achieves G∗(s) = GM(s) when the
relative degree of GP(s) is 1, where G∗(s) is
the closed-loop transfer function that would
result with u(t) = (θ∗)>Ω(t) for all t ≥ 0.
Here, θ̃(t) , θ(t)− θ∗ is the parameter estimation
error, and θ∗r is the component of θ∗ that acts on r(t).
Hence, the error signal of the MRAILC algorithm is:

ek(t) = (G∗(s)−GM(s))[r(t)] +G∗(s)

[
θ̃>k (t)Ωk(t)

θ∗r

]
,

(4)
for all k ∈ N+ and t∈ [0, T ]. As stated in [19],
if the restrictive relative degree assumption is vio-
lated, G∗(s) can be as close to GM(s) as the feedback
structure allows.

G∗(s)

GM(s)

× Γ ×

q−1

1/θ∗rG∗(s)

−

ek θ̃k

θ̃k−1

r

Ωk

Fig. 2. Error model of the MRAILC with the forward trial-shift
operator q.

IV. INSTABILITY OF THE LEARNING
OPERATORS

We will now analyze the MRAILC algorithm
given by (2) and (3) in the same quantitative manner
of [19]. This approach will enable us to later use
linear systems arguments to discuss how the conditions
bringing instability could be introduced to the system
by exogenous signals. Since we are interested in the
convergence properties on the iteration axis, we can
treat θ0 as an initial condition to rewrite the estimation
as a pointwise integrator:

θk(t) = θ0(t) + Γ

k∑
l=1

Ωl(t)el(t), (5)

for all k ∈ N+ and t ∈ [0, T ]. Consequently, the control
at the kth iteration is given by

uk(t) =

(
θ0(t) + Γ

k∑
l=1

Ωl(t)el(t)

)>
Ωk(t), (6)

for all k ∈ N+ and t ∈ [0, T ]. Now let

Ω , (Ω0,Ω1, . . . ), θ , (θ0, θ1, . . . ),

e , (e0, e1, . . . ), u , (u0, u1, . . . ).

We define HΩ : Ll2e → Ll2n2e as the operator
mapping e to θ according to (5), and GΩ : Ll2e → Ll2e
as the mapping from e to u according to (6), both
parametrized by Ω. It is trivial to see that there exists Ω
such that both operators have infinite gain when isolated
from the rest of the system.

Theorem 1 If Ω has an iteration-invariant compo-
nent w such that

w(t) := b+ c sin(ω0t) = E>mΩ0, ∀t ∈ [0, T ],

for some m ∈ {1, 2, . . . , 2n} and positive constants b, c,
and ω0, then HΩ has infinite gain.
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Proof. We prove this by construction as in [19].
Without loss of generality, assume Γ to be the identity
matrix and θ0 = 0, e0 = 0. Let ek(t) = a sin(ω0t+ φ)
for all t∈ [0, T ] and k ∈ N+. It suffices to consider the
component of the vector θk that arises due to w. Hence,
we denote this component ϕk, ϕk(t) ,

∑k
l=0 w(t)el(t).

Since e0 = 0, ‖ϕk‖L2 = kγ for some finite constant γ.
Now let ϕ = (ϕ0, ϕ1, . . . ). Then we have

‖(ϕ)κ‖Ll2 =

(
κ∑
l=1

l2γ2

)1/2

= γ

(
κ∑
l=1

l2

)1/2

= γ

√
κ(κ+ 1)(2κ+ 1)

6
, (7)

by Faulhaber’s formula. Since ‖(e)κ‖Ll2 =
√
κ‖e1‖L2

,
from (7)

‖(ϕ)κ‖Ll2
‖(e)κ‖Ll2

=

√
(κ+ 1)(2κ+ 1)

6

γ

‖e1‖L2

,

so it follows that limκ→∞
‖(ϕ)κ‖Ll2
‖(e)κ‖Ll2

=∞. Thus,HΩ has
infinite gain. �

It is clear from the definition of ϕk that HΩ,
when parametrized by the bounded vector Ω, is
bounded-input bounded-output unstable in the sense
that a bounded input e forces the output ϕ to grow
unboundedly. Also observe that as opposed to the
quantitative proof of [19], the proof of instability is
much less tedious in the iterative case as a result of
the iteration invariance assumption. We discuss this
assumption in the next section. For completeness, we
also state the instability of the operator GΩ.

Theorem 2 If Ω has an iteration-invariant compo-
nent w such that

w(t) := b+ c sin(ω0t) = E>mΩ0, ∀t ∈ [0, T ],

for some m ∈ {1, 2, . . . , 2n} and positive constants b, c,
and ω0, then GΩ has infinite gain.

Proof. Let θ0 = 0 and choose e as in the proof of
Theorem 1. Assume Ω0 = (w1, w2, . . . , w2n) such
that there exists an i ∈ {1, 2, . . . , 2n} so wi = w.
Then, |uk(t)| ≥ k|e1(t)|w2(t) for all k ∈ N+

and t ∈ [0, T ]. The rest of the proof follows the
same steps as before. �

V. ASSUMPTION OF
ITERATION-INVARIANT SINUSOIDALS

The central argument of the proofs of insta-
bility is that ‖(ϕ)κ‖Ll2 (or ‖(u)κ‖Ll2) is O(κ3/2),

while ‖(e)κ‖Ll2 is O(κ1/2), which is due to the
iteration-invariance of w and e. We explain our
reasoning for this assumption as follows: In [19], the
authors use LTI systems arguments to heuristically
argue that closed-loop stability can be violated under
certain conditions when unmodeled high-frequency
time-domain dynamics are present. Hence, sinusoidal
error and parameter signals are used to show the
instability of the feedback operators in the time domain.
By the same token, we assume the same sinusoidal
structure for the error and parameter signals. On the
other hand, the assumption of iteration invariance relies
on the fact that if an exogenous signal exists to
induce sinusoidal behavior in ek and w (e.g. 60 Hz
hum, or a sinusoidal reference) for some k ∈ N, it is
likely to persist up to a phase shift in the following
iterations. This assumption can be relaxed in many
ways. For instance, if ek is bounded and Ωk has a
component wk such that ek and wk are both bounded
away from 0 in an interval contained in [0, T ] ∀k ≥ K,
for some K ∈ N+, the proof follows in a similar
manner: By the boundedness assumptions, ‖(e)κ‖Ll2
would be O(κ1/2) and ‖(ϕ)κ‖Ll2 would be bounded
from below by an O(κ3/2) function.

VI. MECHANISMS OF INSTABILITY

It is discussed in [5, 6] that the arguments of [19]
do not capture all aspects of the problem. In [5, 6],
the author uses averaging methods to further analyze
Rohrs’ counterexample. It is shown that since a step
input is persistently exciting order 1, the set of equlibria
of the parameters is an affine subspace of R2 instead
of an isolated point. Thus, parameters can drift on this
line, thereby leaving the region where the linearized
system is stable. Hence, controller parameters cannot
be determined reliably in the presence of unmodeled
dynamics and disturbances. Similarly, outside the
bandwidth of the plant where unmodeled dynamics
are present, phase shifts of ±180◦ can occur, thereby
violating the positive realness condition.

The iterative adaptation law (3) manifests as
an unstable linear discrete “time”(iteration)-varying
system for each t ∈ [0, T ], so it may be argued that
similar arguments can be made for the adaptive iterative
controller. However, it is not straightforward how time-
domain dynamics can be related to this pointwise
integrator to show that the equilibrium set of θk has
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possibly more than a single element‡: Since the system
state θk lies in an infinite-dimensional subspace of L2,
the system is distributed. Nevertheless, linear systems
concepts can be used in the style of [19] to give a
sufficiently intuitive explanation of how instability can
occur. Let us now try to give heuristic explanations in
the same way.

6.1. Existence of the Sinusoidals

We argued in Section V that if an exogenous
signal exists to induce sinusoidal behavior, it is likely
to be invariant over the iteration domain. This argument
is consistent with the assumptions of classical ILC,
and also that of [19]. For example, the invariance of
the reference (or disturbance) from trial-to-trial is a
standard assumption in ILC. On the other hand, certain
disturbances that affect system dynamics during a trial,
such as measurement noise, load disturbance, or mains
hum, will also persist in future trials. Thus, we can
consider a single trial in conjecturing how these signals
can be introduced to the feedback system.

First, assume that the reference signal is sinusoidal
with frequency ω0 and a bias term. Then, from linear
systems theory, the output yk, and consequently all
components of Ωk will be sinusoidals at frequency ω0

and a bias term with a phase shift. Now under the
common assumption that plant uncertainties occur at
high frequencies, G∗(s) will match GM(s) at DC, but
not at a large enough ω0. Therefore, ek will be a sine
wave at frequency ω0. Thus, the conditions for the
infinite gains of GΩ and HΩ will be satisfied.

Now we suppose that a sinusoidal disturbance d of
frequency ω0 corrupts the output yk additively. Then,
the measured output yk + d will have a sinusoid at
frequency ω0, and so will Ωk and ek by definition.
Again, the conditions for infinite gain will be satisfied.

6.2. Destabilizing Effects of the Infinite-Gain
Operators

In [21], the author considers an extension of
the well known SPR-Lyapunov design approach [16],

‡In fact, it is trivial to see via the Laplace transform that in an infinite
horizon setting (i.e. T =∞) there is a unique time-invariant parameter
signal for all nonzero references achieving perfect tracking. In other
words, assuming uniform convergence to 0, any nonzero reference is
sufficiently rich of all orders in the iterative domain due to the fact
that the signal space L2 is infinite dimensional. For instance, when the
reference is a step, perfect tracking implies that the closed-loop system
must match the whole spectrum of the reference model as opposed to
just zero frequency (DC), which is the case in adaptive feedback. Now
the question is whether we can find a time-varying parameter that can
also achieve perfect tracking given a nonzero reference.

coined Iterative-SPR-Lyapunov lemma. Under the
assumption that GP(s) has relative degree 1, G∗(s) can
be made equal to GM(s), simplifying (4) to

ek(t) = G∗(s)

[
θ̃>k (t)Ωk(t)

θ∗r

]
, ∀k ∈ N,∀t ∈ [0, T ].

Since G∗(s) is SPR, the system is known to be
stable for k = 0. In addition, for each t ∈ [0, T ], the
SPR assumption enables the construction of a discrete
Lyapunov functional over the iteration domain that is
nonincreasing, thereby proving pointwise convergence
of the error to 0 and boundedness of all signals.

We consider two pathological cases that may lead
to the failure of this approach. First, the fact that the
error converges pointwise to 0 is a key ingredient of the
MRAILC algorithm of Section III since the converse
implies a divergent series. If there is a steady-state error
on an interval contained in [0, T ], caused by a persistent
disturbance, the adaptive law will integrate this error
with each iteration, and θ will be unbounded by virtue
of the infinite gain of HΩ. For the second case, we
assume that ω0 is large enough so that G∗(s) is subject
to phase shifts of±180◦ when unmodeled dynamics are
present. To analyze the case, we direct our attention to
Figure 2 and note that the error system of the MRAILC
is a feedback controller in the iteration domain. Thus,
the phase shift of ±180◦ combined with the infinite
gain will affect the iterative loop the same way it
affects the feedback loop by enforcing the error signal
so it grows in amplitude with each iteration. In other
words, if the relative degree assumption is violated
so that G∗(s) does not equal GM(s), and G∗(s) has
a±180◦ phase shift, the iterative controller will create a
positive feedback loop due to a change of sign that will
force signals to grow unboundedly.

It is well worth noting that these results are to be
expected: The MRAILC algorithm can be interpreted
as a standard MRAC where the exogenous signals
are periodic with period T , and the adaptation law is
reformulated as a periodic update. Therefore, it should
not come as a surprise that the MRAILC system loses
stability in the same conditions as MRAC. We verify
these via simulation in the following section.

VII. SIMULATIONS

The heuristic arguments of the previous section
provide good intuition into causes of instability, but do
not necessarily describe the situation accurately since
the adaptive system is nonlinear. Hence, in this section
we will present several simulation scenarios to support
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Fig. 3. Stable learning of a sinusoidal reference under per-
fect modeling without disturbance; the desired reference
is r(t) = 0.3 + 2 sin(4t).

our claims. We consider the following model that was
originally presented in [19]:

GP(s) = 2
s+1 , G(s) = 2

s+1
229

s2+30s+229 ,

GM(s) = 3
s+3 ,

Ωk(t) =
[
r(t) yk(t)

]>
.

We define ωrk(t) and ωyk(t) such that

θk(t) =
[
ωrk(t) ωyk(t)

]>
,

and initialize the simulations with

θ0(0) =
[
1.14 −0.65

]>
,

thereby yielding the stable system

G∗(s) =
527

s3 + 31s2 + 259s+ 527
,

for θ∗ = θ0(0). We take the adaptation rate Γ to be the
identity matrix. We choose T to be relatively small at
5 seconds to ensure “stability” in the time domain and
that signals remain bounded for a few iterations. Note
that since the adaptation law is static (therefore causal)
in time, the short simulation time does not affect the
signal content in the sense that taking T > 5 would have
resulted in the same signals for the first 5 seconds, for
each iteration. We also note that when G(s) is equal
to 2/(s+ 1), i.e. there are no unmodeled dynamics, the
MRAILC algorithm guarantees pointwise convergence
to 0 for GP(s), GM(s), Ωk(t), θk(t) and Γ chosen as
above.

For our first example, we will consider a sinusoidal
reference. In [19], it was shown that the system
went unstable for r(t) = 0.3 + 1.85 sin(16.1t), where
16.1 rad/s is the frequency where G(s) has a 180◦ phase
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(b) Evolution of the parameter vector from the first to the last
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(c) Evolution of the error L2 norm in the iteration domain

Fig. 4. Instability in sinusoidal reference tracking without disturbance;
the desired reference is r(t) = 0.3 + 2 sin(4t).

shift. On the other hand, all closed-loop signals were
shown to remain bounded for r(t) = 0.3 + 2 sin(8t),
despite a “bursting” period. Hence, we take a more
modest frequency of 4 rad/s and simulate the system
for r(t) = 0.3 + 2 sin(4t). We observe in Figure 3 that
when unmodeled dynamics are not present, i.e. G(s)

equals GM(s), the MRAILC algorithm seems to be
driving the error to 0 in the L2 norm topology despite

c© 2016 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society
Prepared using asjcauth.cls



8 Asian Journal of Control, Vol. 00, No. 0, pp. 1–11, Month 2016

0 1 2 3 4 5
0

0.5

1

1.5

2

Time (s)

O
ut

pu
ts

 

 

 
yd(t)

y0(t)

y8(t)

(a) Evolution of the output from the first to the last iteration

0 1 2 3 4 5 6 7 8
0.1

0.15

0.2

0.25

Iteration

E
rr

or
 N

or
m

(b) Evolution of the error L2 norm in the iteration domain

Fig. 5. Instability in setpoint tracking without disturbance; the desired
reference is r(t) = 1.0.

the fact that only pointwise convergence was proven.
On the other hand, Figure 4 indicates that while the
MRAC scheme (trial 0) remains stable for 5 seconds,
the resulting tracking error at trial 8 is larger than the
original error. In fact, our simulation had a singularity at
the attempted 9th trial, with an infinite-derivative error.
A closer look at the evolution of the parameter vector
reveals the infinite-gain action of HΩ, where the final
parameter signal can be seen to be much larger than the
initial. We also note that the parameter has evolved in a
complicated manner and the signal at the 8th iteration is
rich with harmonics. The infinite-gain action that leads
to stability is perhaps most easily seen in the last graph,
where we see that the MRAILC scheme indeed reduces
the L2 norm of the tracking error for 2 iterations before
going unstable.

For the second case, we consider the problem of
setpoint tracking with r(t) = 1.0. Although not shown
here, the MRAC scheme performs quite well with
very stable behavior and perfect tracking for prolonged
periods of time sinceG∗(s) readily matchesG(s) at DC.
However, Figure 5 shows the error again starts to grow
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Fig. 6. Instability in regulation with a load disturbance; the desired
reference is r(t) = 0.0 and the disturbance is d(t) = 1.0.

unboundedly with each trial after a reduction period of
3 trials. Hence, we see that while the MRAC scheme
offers high performance in DC, an attempt to improve
the transients leads to instability in the iteration domain.
In this case, an appropriate takeaway message would
be that the MRAILC fails to apply the “common-sense
rule” of not fitting a model to bad data [4]: Although
system uncertainty is low at DC, the MRAILC system
learns a large bandwidth that is necessary to compensate
for the transient error in response to a step reference. In
particular, we observe in Figure 5 that the response to
the learned input at the 8th iteration shows oscillatory
behavior due to the high-gain operators, as opposed to
the initial output which is devoid of high frequencies.
We see a similar trend of initial steady decrease of the
error for regulation in response to a load disturbance
in Figure 6, where the error starts to increase with
each iteration after the 9th trial. Again, the high-gain
operators result in instability despite the low bandwidth
of the exogenous signals r and d.

Next, we reconsider setpoint tracking but at a lower
amplitude, where r(t) = 0.1, but assume a persistent
sinusoidal disturbance given by d(t) = 0.01 sin(8t).
Figure 7 shows that the MRAILC algorithm performs
well and reduces the tracking error this time for about
25 iterations, before beginning to diverge. In this
case, the lower amplitude of the signals help maintain
stability for a longer time, but the algorithm cannot
counteract the phase shift inherent in the system. A
closer look at the evolution of the parameter vector
shows that the adaptation law has roughly learned the
frequency of the disturbance, so the phase error of the
system must be the source of the problem that leads to
parameter drift.

Finally, we note in Figure 8 that when the
disturbance is changed to d(t) = 0.1 sin(4t), the
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(a) Evolution of the parameter vector from the first to the last
iteration
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Fig. 7. Instability in setpoint tracking with a sinusoidal disturbance;
the desired reference is r(t) = 0.1 and the disturbance
is d(t) = 0.01 sin(8t).
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Fig. 8. Stable learning of setpoint tracking with sinusoidal disturbances
at low amplitude and bandwidth; the desired reference
is r(t) = 0.1 and the disturbance is d(t) = 0.1 sin(4t).

algorithm progressively decreases the error despite an
initial transient phase. This implies that the exogenous
signals have to have a low enough frequency and
amplitude to preserve stability and prevent bursting:

In this case, it seems that for setpoint tracking
at r(t) = 0.1, the upper bound for the frequency of
admissible disturbances lies somewhere between 4
and 8 rad/s, while the amplitude can possibly be greater
than 0.1.

VIII. CONCLUSION

In this paper, we studied the robustness problem
of AILC in the presence of unmodeled dynamics. We
generalized function space concepts to ILC systems
to define the notion of gain and showed the existence
of infinite-gain operators in an MRAILC algorithm.
Heuristic linear systems arguments were put forth
to explain how instability can occur, which were
backed by several simulation examples. Our findings
indicate that the shortcomings of MRAILC in terms of
robustness are no different than those of MRAC. In fact,
the robustness issue is found to be more severe with
certain cases demonstrating that the learning operation
deteriorates a readily satisfactory tracking performance
given by MRAC.

It is reasonable to say that similar problems can
occur in a variety of AILC schemes. As a matter of
fact, most ILC systems that achieve perfect tracking
are essentially iterative integrators [7] and are prone
to instability in the presence of unmodeled dynamics.
For example, stability of proportional-derivative type
ILC schemes depend on a specific relative degree
assumption [2]. However, in the nonadaptive case, there
are easy remedies for this such as the use of the low-pass
Q-filter [13, 8]. In the adaptive feedback case, although
the parameter drift problem has been resolved [16], the
ability to adjust closed-loop bandwidth is a nontrivial
problem. In general, filtering has been shown not to
be effective and even detrimental, save for some recent
approaches given in [9, 27]. Based on the similarities
between adaptive feedback control and AILC, similar
results are likely to be encountered in the iterative case.
We believe further research is necessary to investigate
these issues and understand how AILC schemes can be
made to be more robust under uncertainties.
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