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INTRODUCTION
Iterative learning control (ILC) is a feedforward
control strategy aimed towards systems that ex-
ecute the same task repetitively [1]. ILC is based
on the idea that the performance of such systems
can be improved by using information from pre-
vious trials. ILC modifies the control input rather
than the controller itself for better tracking perfor-
mance [1, 2]. As such, ILC can be thought of
as feedback in the iteration domain. Naturally,
this property equips iterative learning controllers
with simplicity, robustness and fast convergence
to iteration domain equilibria with a significant de-
crease in error metrics up to several orders of
magnitude.

Research on robust ILC has focused on dis-
turbance rejection, stochastic effects, transient
growth, µ synthesis, and robustness to high fre-
quency modeling uncertainties [3, 4]. Previous
work by the authors presented the design of ILC
algorithms for systems with large parametric un-
certainties [5, 6]. Robustness of control algo-
rithms in the time and iteration domains is es-
pecially important as applications with parametric
uncertainties (multi-agent systems, precision mo-
tion controllers, prosthetics) requiring monotonic
behavior and high tracking performance can ben-
efit from it.

Recent work by Parmar et al. [7] presented
the development of a single axis flexure bearing
based large range nanopositioner. In [7], nonlin-
earities associated with the actuator and its driver,
endogenous noise components, and the low open
loop bandwidth prevented conventional feedback
controllers from achieving nanometric tracking
performance. Subsequently, ILC was employed
with a feedback controller to achieve a large work-
ing range, high scanning speeds, and nanomet-
ric tracking performance [8]. The combination of

linear ILC and feedback resulted in a 10nm root
mean squared error (RMSE) over a 4mm range
2Hz bandlimited triangular profile. Nevertheless,
although traditional ILC enabled compensation of
the aforementioned limitations; parametric uncer-
tainties due to changing payloads and position
dependent nonlinearities must be addressed to
fully realize the potential of large range nanopo-
sitioners.

To overcome iteration varying factors such as
these, the combination of an L1 adaptive feed-
back controller with an ILC feedforward controller
into a single framework was proposed [5]. In [5],
the L1 adaptive controller was designed to com-
pensate for nonrepetitive, low frequency (para-
metric) uncertainty in the time domain, and en-
sure that the plant as seen from the feedforward
input was sufficiently close to its nominal value.
On the other hand, the iterative learning controller
was utilized to compensate for repetitive system
uncertainties in the iteration domain. L1 adap-
tive control was preferred over more conventional
forms (e.g. model reference adaptive control) be-
cause of its guaranteed robustness bounds (sta-
bility of the feedback loop is a necessary condi-
tion for ILC), along with a priori known, quantifi-
able, steady state and transient performance.

In this paper, we present a modified L1 adap-
tive control architecture to accommodate parallel
ILC signals [6] and prevent the trade-off between
time and iteration domains previously found in
[5]. We then compare the combined frame-
work against conventional ILC on the large range
nanopositioner [7, 8] under parametric uncertain-
ties through simulation.

L1 ADAPTIVE CONTROL
L1 adaptive control theory is a recently devel-
oped methodology [9] with guaranteed transient
performance and robustness in the presence of



fast adaptation. The critical feature of L1 adap-
tive control theory is the decoupling of estimation
and control, realized by the insertion of a ban-
dlimited filter at a particular point in the architec-
ture. In L1 adaptive control, adaptation rates can
be increased arbitrarily; although practical con-
cerns such as hardware speed and noise may
limit achievable performance. The performance-
robustness trade-off of L1 systems is defined by
the bandwidth of the filter and can be adressed
with tools from classical and robust control. Con-
sequently, uniform performance bounds on all
system signals can be enforced without resort-
ing to gain scheduling, persistency of excitation
or high gain feedback.

L1 adaptive control algorithms have been devel-
oped for a wide variety of classes. We now
present the L1 architecture for single-input single-
output (SISO) linear time invariant (LTI) systems
with unknown constant parameters. To put the
L1-ILC problem into a meaningful format, we aug-
ment the original controller [9] with a bounded
feedforward signal. This makes sure that the ILC
signal does not act as a disturbance to the L1
controller and overcomes the trade-off between
closed loop bandwidth and ILC performance ob-
served in [5].

Problem Formulation
We consider the following class of systems

ẋ(t) = Ax(t) +B(u(t) + θTx(t)), x(0) = x0,
y(t) = Cx(t).

(1)
where x(t) is the n dimensional measured state
vector; u(t) is the control input; B,CT are
known constant vectors; A is a known con-
stant matrix, with (A,B) controllable; θ is an
unknown constant vector such that ‖θ‖∞ ≤ m
for some known m; and y(t) is the output sig-
nal. The L1 adaptive controller ensures transient
and steady-state behavior in the input and out-
put channels in relation to the L1 reference sys-
tem. The reference system is described by the
triple (Am, B,C), the uncertain parameter θ, and
the strictly proper bounded-input bounded-output
(BIBO) stable transfer function D(s) with DC gain
1 and zero state space initialization. Am is a sta-
ble matrix which describes the desired dynam-
ics and can be achieved through state feedback.
D(s) is subject to the L1 norm stability condition

λ , ‖G(s)‖L1
mn < 1, (2)

where G(s) , H(s)(1 − D(s)), and H(s) ,
(sI − Am)−1B, which guarantees bounded-input
bounded-state (BIBS) stability of the reference
system. The feedforward augmented closed loop
reference system is then defined as

ẋref (t) = Axref (t) +B(uref (t) + θTxref (t)),
yref (t) = Cxref (t),

Uref (s) =−KTXref (s) + Ui(s)

+D(s)(KgR(s)− θXref (s)),
(3)

with initial condition xref (0) = x0, where K is the
state feedback gain such that Am = A − BKT ;
Ui(s) is a bounded input signal; Kg = 1/(CH(0))
is a static precompensator; and R(s) is the refer-
ence signal.

L1 Adaptive Controller
The L1 adaptive controller is based on the fast es-
timation scheme which makes use of a state pre-
dictor, the bounded feedforward input ui(t) and
the bandlimited filter D(s).

State Predictor
The control law relies on the following state pre-
dictor

˙̂x(t) = Amx̂(t) +B(θ̂T (t)x(t) + u(t))−Kspx̃(t),
(4)

with initial condition x̂(0) = x0, where x̂(t) is the
state prediction vector; θ̂(t) is the estimate of the
unknown vector θ; x̃(t) , x̂(t) − x(t) is the pre-
diction error; and Ksp is gain matrix that can be
used to assign faster poles to (Am −Ksp) [10].

Adaptation Law
The adaptation law that estimates θ is

˙̂
θ(t) = ΓProj(θ̂(t),−x̃T (t)V Bx(t)), (5)

where the initial condition θ̂(0) = θ̂0 is arbitrary
provided ‖θ̂0‖∞ ≤ m, ; Proj(., .) is the “smooth
projection” operator defined in [11]; Γ > 0 is the
adaptation rate; and V = V T > 0 is the solu-
tion to the algebraic Lyapunov equation ATV +
V A = −Z, for arbitrary positive definite symmet-
ric matrix Z. The projection operator ensures that
‖θ̂(t)‖∞ ≤ m by definition and thus keeps the pa-
rameter estimate bounded.

Control Law
The control input is defined as

u(t) = ui(t) + um(t) + uad(t),

um(t) , −KTx(t),

Uad(s) , D(s)(KgR(s)− η̂(s)),

(6)



where ui(t), um(t) and uad(t) are the feedforward,
static feedback and adaptive feedback signals, re-
spectively, and η̂(s) is the Laplace transform of
(θ̂T (t)x(t)).

The closed loop system with control (6) defined
according to (4) and (5), together with the stabil-
ity condition (2), is stable. In addition, the system
has uniform performance bounds on both the in-
put and the output :

‖xref − x‖L∞ ≤
φ1√

Γ
, lim
t→∞

(xref (t)− x(t)) = 0,

‖uref − u‖L∞ ≤
φ2√

Γ
, lim
t→∞

(uref (t)− u(t)) = 0,

(7)
where φ1 and φ2 are constants dependent on sys-
tem parameters. In other words, arbitrary close
model tracking can be achieved by increasing Γ.
As ILC uses information from input and output
channels, this property enables the use of the ref-
erence model in designing the ILC update law.
Moreover, the reference system can be made ar-
bitrarily close to the desired system [9] by increas-
ing the bandwidth of D(s). This, however, comes
at the expense of reduced robustness. Further
details of the stability analysis and derivation of
(7) for the nonaugmented system can be found in
[9].

ITERATIVE LEARNING CONTROL
ILC architectures can be broadly classified in two
groups as parallel and series. In essence, the
two architectures can be found to be equivalent
when the input signals are rearranged. The par-
allel architecture, which we use in our controller,
divides the input signal into feedback and feed-
forward components. In this approach, the learn-
ing controller outputs the feedforward signal for
the next iteration by processing the error and the
feedforward input at the current iteration.

ILC design methods are numerous and include
frequency domain, plant inversion, H∞ and norm
optimization techniques. Frequency methods,
whilst only approximating the system (due to fi-
nite trial duration), offer simplicity, flexibility and
tunability as in classical control. The learning con-
trollers that we use in this paper are designed us-
ing frequency domain methods.

ILC Update Law
A common first order frequency domain ILC algo-
rithm, which we will employ in our controller, is the
Q filter and learning function approach:

Ui+1(s) = Q(s)(Ui(s) + L(s)Ei(s)). (8)

In (8), Ui(s) is the ILC input; Q(s) is the Q filter;
L(s) is the learning function; Ei(s) is the refer-
ence tracking error; and i is the iteration index.
In this algorithm, L(s) is designed to maximize
learning, while Q(s) is used to limit the bandwidth
to robustify the system and for other practical pur-
poses.

Stability and Robustness
The ILC problem can be simplified by designing
the ILC update law for the reference model (3).
Nevertheless, due to the fact that the L1 controller
aims to compensate for the system uncertainty
within the bandwidth of D(s), system uncertainty
will still exist. For simplicity of notation, we drop
the subscript ref . Then, assuming zero initial
conditions, the reference model dynamics for ILC
are defined as

Yi(s) = P ′(s)Ui(s) + P ′(s)KgD(s)R(s), (9)

where P ′(s) , P (s)W (s), with P (s) , CH(s) and
W (s) , 1

1−θG(s) . The ILC update law (8) is mono-
tonically stable for the nominal system when

γ = ‖Q(s)(1− L(s)P (s))‖∞ < 1, (10)

where γ < 1 is the convergence rate. The
condition implies ‖e∞ − ei+1‖L2 < γ‖e∞ − ei‖L2 ,
where e∞(t) is the converged error. Robustness
of the update law against parametric uncertainty
is guaranteed by the bound

α <
γ − |Q(jω)||1− L(jω)P (jω)|
|Q(jω)||L(jω)||P (jω)|

, (11)

where α = m
√
n‖G(s)‖∞

1−m
√
n‖G(s)‖∞

. If (11) is satisfied, the
system is monotonically stable with rate γ for any
θ with ‖θ‖∞ ≤ m.

Assuming a stable update law, the iteration do-
main equilibrium can be expressed as

U∞(s) = Q(s)L(s)
1−Q(s)(1−L(s)P ′(s)) (1− F (s))R(s),

E∞(s) = 1−Q(s)
1−Q(s)(1−L(s)P ′(s)) (1− F (s))R(s),

(12)
where F (s) , P ′(s)KgD(s). The tracking error
is minimized within the bandwidth of the Q filter.
The readers are referred to [1] for further details
on frequency domain ILC design methods and [6]
for a rigorous analysis of the combined L1-ILC
scheme.



DESIGN TRADE-OFFS
The trade-offs between iteration and time do-
main properties can be observed via the inequal-
ity |L(jω)||P (jω)| ≤

(
γ

|Q(jω)| + 1
)

(|1− θH(jω)|+
|D(jω)||θH(jω)|) [6]. Since D(s) and Q(s) de-
scribe the performance-robustness trade-offs in
their respective domains, generally speaking, the
following design trade-offs can be deduced:

1. Increasing the bandwidth of D(s) decreases
the convergence rate γ, i.e. faster itera-
tion domain performance. Indirectly, a higher
bandwidth also results in better iteration do-
main robustness, thereby leaving the possi-
bility of higher gain Q filters for enhanced
performance: As the L1 filter bandwidth in-
creases, the minimum γ in (11) becomes
bounded further away from 1 and naturally,
α decreases since G(s) , H(s)(1 − D(s)).
As a result, the designer can tune Q(s) to in-
crease its bandwidth and minimize the con-
verged error.

2. Decreasing the bandwidth of Q(s) decreases
the minimum allowable γ that would satisfy
(11), which signifies increased iteration do-
main robustness. This further implies that
one can use a lower gain D(s) for a feed-
back system with better stability margins:
Because Q(s) has a lower gain, there exists
a higher value of α satisfying (11) for the orig-
inal value of γ.

Thus, the design trade-offs for the combined
adaptive-learning controller can be summarized
as that of performance versus robustness. Intu-
itively, this is to be expected as increasing the
passband of D(s) decreases parametric uncer-
tainty (W (s) = [1− θH(s)(1−D(s))]

−1), which is
the desired result from an ILC perspective.

PRACTICAL CONSIDERATIONS AND DESIGN
OF THE COMBINED CONTROLLER
In the design of the combined controller, the first
step is the selection of the desired dynamics. The
readers should note that the use of a static feed-
back gain is not necessary and Am can be simply
chosen to be A (assuming stable dynamics) for
simplicity. However, satisfying the L1 norm condi-
tion in (2) can be difficult and might lead to high
gain feedback when the desired dynamics are far
from the actual system dynamics. A good strat-
egy would be to take A to describe the nominal

open loop dynamics and use static feedback to
achieve Am. Additionally, it should be observed
that ‖G(s)‖L1

can also be decreased by increas-
ing the damping ratio of the desired pole loca-
tions.

After Am is chosen, the next step is deciding on
the structure and bandwidth of D(s). While there
is no rigorous relationship between the order of
D(s) and the L1 norm of G(s), the reference sys-
tem can be made arbitrarily close to the desired
system by increasing the bandwidth at the ex-
pense of reduced robustness.

For a given filter, the L1 adaptive controller has
guaranteed (bounded away from zero) robust-
ness margins. Thus, in order to track the ref-
erence system, Γ should be increased as much
as hardware permits. However, large values of
the adaptive gain might also amplify noise and
thus negatively affect closed loop performance.
Also note that when the adaptive gain and conse-
quently tracking performance is impeded by these
practical concerns, ILC can be more effective for
large reference amplitudes: As the signals in-
crease in amplitude, the signal to “noise” (tracking
error, see (7)) ratio increases.

Once the adaptive controller parameters are se-
lected, the learning function can be designed on
the nominal system via the well known Nyquist
tuning method. The Q filter can then be used to
robustify the system against high frequency dy-
namics and noise, and to ensure monotonic ro-
bust stability by satisfying (10) and (11).
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FIGURE 1. L1 stability condition as a function of
cutoff frequency for different filters. Here, D1(s) =
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SIMULATION RESULTS
We now present the simulation results of the L1-
ILC scheme on the large range nanopositioner
from [7, 8]. The nominal open loop transfer func-
tion from the actuator input has been identified in
[8] as

P (s) =
9× 109(s2 + 5.63s+ 3.34× 105)

(s+ 141.5)(s2 + 159.50s+ 5.01× 104)

× 1

(s2 + 12.43s+ 3.87× 105)
. (13)

In [8], the authors used the following output com-
pensator to improve the dynamics of the nanopo-
sitioner:

C(s) =
1.57× 104(s+ 141.5)

s(s+ 4000)

× (s2 + 159.50s+ 5.01× 104)

(s2 + 6700s+ 1.92× 107)
. (14)

Since the transfer function of the plant was
obtained through system identification, the
MATLAB R© function balreal was used to come up
with the state matrices A, B and C, and m was
set to 1.5. The desired closed loop eigenvalues
were then selected to be the poles of the reduced
order (5th) closed loop system, which results in
near identical step responses. It can be eas-
ily seen that the unknown feedback gain θ with
‖θ‖∞ ≤ m has negligible effects on the closed
loop time and frequency responses for the state
feedback case. However, the uncertainty results
in an over 250 Hz variation on the fastest closed
loop pole (nominal frequency of 891 Hz) and over
50 Hz variation on the faster complex pole pair
(nominal frequency of 339 Hz with a damping ra-
tio of 0.24).

For the L1 controller, the low-pass filter D(s) was
chosen to be 1 − ( s

s+2πfc
)3, where the cutoff fre-

quency fc is 400 Hz. D(s) was selected as a 3rd
order filter to better attenuate the high frequen-
cies in the input signal and satisfy the L1 norm
condition without having excessive bandwidth in
the adaptive controller (see figure 1). The desired
dynamics and feedback filter results in the robust-
ness parameter α to be equal to 0.196. Ksp was
taken to be 0 for simplicity, and Γ was set to 1012

for close tracking of the reference system.

The results concerning ILC stability and robust-
ness can be identically extended to the discrete
time case. Hence, for simplicity, we design the
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FIGURE 2. Transients in the learning controllers
due to change of parameters. Scenario 1.

update law in the z domain at a sampling fre-
quency of 10 kHz. We choose a phase lead
type learning function and normalize with the
DC gain of the nominal system, letting L(z) =
Kgz

−10. The Q filter is chosen as a 5th or-
der discrete Butterworth filter. To avoid phase
lag in the control signal, Q(z) is employed as
a zero phase filter using the MATLAB R© func-
tion filtfilt. For comparison, we also consider
the output feedback learning controller on the
closed loop system in [8]. On the output feed-
back based ILC, we let L(z) = z−10 and use
the same Q filter, injecting the ILC input before
the feedback compensator. We present two dif-
ferent scenarios to expose the advantages of the
L1-ILC scheme over conventional ILC with output
feedback. In the first scenario, the initial value
of the parameter θ is set to

[
0.1 0 0 0 0

]T
and changed to

[
−0.1 0 0 0 0

]T at the 10th
iteration. For the second scenario, we begin
with θ =

[
1.5 0 0 0 0

]T and switch to θ =[
−1.5 0 0 0 0

]T , again at the 10th iteration.
We choose to look at the effects of the varia-
tions in the first element since x1 (state 1) has
the highest contribution to the output: Hankel sin-
gular value of x1 is 52% more in the closed loop
system when compared to other states.

The results of the first case can be seen in figure
2. While the LTI output feedback based system
shows slightly lower converged RMSE values, it
suffers an 1383% increase in RMSE due to a very
slight change in parameters, whereas the L1-ILC
scheme only shows an 18% increase in the same
iteration. In the second scenario (see figure 3),
the parameter change causes a 825% increase
in RMSE for L1 feedback but converges back to
a close equilibrium. In the same case, the output



feedback system shows an increase of 29168%
before going unstable. It should be kept in mind
that in both cases, better results can be achieved
through less agressive learning.
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FIGURE 3. Transients in the learning controllers
due to change of parameters. Scenario 2.

We remind the readers that neither the adaptive
controller nor the learning controllers were opti-
mized for a set of design specifications and hard-
ware constraints, but rather designed to make
a rough comparison under a similar set of con-
ditions. A comparison of the L1-ILC scheme
with unknown input gain and disturbance against
conventional state feedback was previously done
in [5]. Despite the direct “plug-in” L1-ILC ap-
proach (the adaptive controller was not modified),
it was shown that the scheme was far superior
to nonadaptive feedback based ILC. In [6], we
did extended numerical simulations showcasing
the properties of the L1-ILC scheme in this pa-
per. We would also like to note that [6] gives
a better example in showing the effectiveness of
adaptive feedback since the system in question
is open loop with slow dynamics (mass-spring-
damper system with a natural frequency of 1
rad/s), wherein the uncertain parameter is large
enough to destabilize the closed loop system.

CONCLUSIONS
While the state feedback L1-ILC scheme shows
promising results, extension to the output feed-
back case is necessary for feasible implementa-
tion on applications without full state measure-
ment; such as the large range nanopositioner.
Future work will concentrate on experimental ver-
ification and extending the results to the out-
put feedback and multiple-input multiple-output
(MIMO) cases with additional uncertainties.

ACKNOWLEDGMENTS
This work was supported by startup funds from
the University of Michigan.

REFERENCES
[1] Bristow D, Tharayil M, Alleyne A. A Survey

of Iterative Learning Control. IEEE Control
Systems Magazine. 2006; 26(3): 96-114.

[2] Moore K. Iterative Learning Control for De-
terministic Systems. Springer-Verlag, Lon-
don: 1993.

[3] De Roover D, Bosgra O. Synthesis of Ro-
bust Multivariable Iterative Learning Con-
trollers with Application to a Wafer Stage
Motion System. International Journal of
Control. 2000; 73(10); 968-979.

[4] Moon JH, Doh TY, Chung MJ. A Robust Ap-
proach to Iterative Learning Control for Un-
certain Systems. Automatica. 1998; 34(8):
1001-1004.

[5] Barton K, Mishra S, Xargay E. Robust Iter-
ative Learning Control: L1 Adaptive Feed-
back Control in an ILC Framework. Ameri-
can Control Conference. 2011; 3663-3668.

[6] Altın B and Barton K. L1 Adaptive Control
in an Iterative Learning Control Framework:
Stability, Robustness and design Trade-
Offs. American Control Conference. 2013,
submitted for publication.

[7] Parmar G, Hiemstra DB, Chen Y, Awtar S.
A Moving Magnet Actuator for Large Range
Nanopositioning. ASME Dynamic Systems
and Control Conference. 2011; 41-48.

[8] Parmar G, Awtar S, Barton K. Large Dy-
namic Range Nanopositioning Using Itera-
tive Learning Control. Precision Engineer-
ing. 2013; under review.

[9] Cao C and Hovakimyan N. L1 Adaptive
Control Theory: Guaranteed Robustness
with Fast Adaptation. Philedelphia, PA: So-
ciety for Industrial and Applied Mathemat-
ics, 2010.

[10] Cao C and Hovakimyan N. Design and
Analysis of a Novel L1 Adaptive Controller,
Part I: Control Signal and Asymptotic Sta-
bility. American Control Conference. 2006;
3397-3402.

[11] Pomet JB and Praly L. Adaptive Nonlinear
Regulation: Estimation from the Lyapunov
Equation. IEEE Transactions on Automatic
Control. 1992; 37(6); 729-740.


