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Abstract— Repetitive processes are two dimensional (2D) sys-
tems that arise in the modeling of engineering applications such
as additive manufacturing, in which information propagation
occurs along two axes of independent variables. While the
existing literature on repetitive processes is predominantly on
linear systems, recent work highlights the need to develop
rigorous tests for stability of nonlinear processes. Using existing
results from linear repetitive process theory, we establish a
differential repetitive process analogue of the well known
result that the stability of a nonlinear feedback system can
be verified by the stability of the linearized dynamics. In
particular, we employ a 2D Lyapunov equation to show that
the feasibility of a linear matrix inequality, combined with 2
small gain conditions, can guarantee stability locally around
an equilibrium. Finally, we apply this result to the design and
stability analysis of iterative learning control (ILC) systems,
and discuss implications in the context of nonlinear ILC.

I. INTRODUCTION

Repetitive processes are two dimensional (2D) dynamic
systems that arise in the modeling of engineering applica-
tions such as additive manufacturing, in which information
propagation occurs along two axes of independent variables.
These processes are characterized by a series of sweeps,
termed passes (coincidentally, the processes were also named
multipass earlier in the literature), with finite length or
duration, that act as forcing functions on the dynamics of
future passes [1]. A closely related field is iterative learning
control (ILC), which can be thought of as a special class
of repetitive processes, wherein the pass to pass dynamics
are induced through the construction of a recurrence relation
that updates the feedforward input using past data.

The literature on repetitive processes (and other 2D sys-
tems) is predominantly on linear systems. While much work
has been done in this area in terms of stability analysis and
control synthesis, recent work highlights the need to develop
rigorous tests for stability of nonlinear processes [2], [3], [4].
In the ILC literature, it has been noted that nonlinear update
laws have not been extensively researched, save for adaptive
laws for locally Lipschitz plants, and a systematic theory of
nonlinear ILC is an open question [5], [6], [7]. The need
to develop a sound theory for nonlinear repetitive processes
is further supported by practical applications of a repetitive
nature such as laser metal deposition [8], [9].
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In this paper, using existing results from linear repetitive
process theory, we establish a differential repetitive process
analogue of the well known result that the stability of a
nonlinear one dimensional (1D) feedback system can be
easily verified by the stability of the linearized dynamics.
In particular, we employ a 2D Lyapunov equation to show
that the feasibility of a linear matrix inequality (LMI),
combined with 2 small gain conditions on the pass to pass
transfer function, can guarantee stability locally around an
equilibrium. Finally, we apply this result to the design and
stability analysis of ILC systems, and discuss implications
in the context of nonlinear ILC.

The rest of the paper is organized as follows: Section II
gives some theoretical background on linear repetitive pro-
cesses. In section III, we introduce state space representations
of linear time invariant (LTI) differential repetitive processes,
along with the 2D Lyapunov equation. A representation of
nonlinear time invariant repetitive processes is presented in
section IV, with conditions on stability, followed by our
main result. Section V briefly discusses the implications of
our result in the context of nonlinear ILC. An illustrative
example is given in section VI, with concluding remarks
in section VII. For a more streamlined presentation, two
technical results that are used in the proof of our main
theorem are given in the appendix.

II. BACKGROUND AND PRELIMINARIES

In this section, we give a brief background on the general
model of linear repetitive processes, and present the style of
notation to be used throughout the manuscript for clarity.

A. Notation

We use R to represent the set of real numbers, and N the
set of nonnegative integers. The spectral radius of a linear
operator H is denoted ρ(H). For a matrix H , HT is the
transpose, and H > 0 implies positive definiteness. Given
square matrices H1 and H2, H1 ⊕H2 is their direct sum. I
and 0 denote the identity and zero matrices of appropriate
size, respectively. Given a transfer function H(s), ‖H(s)‖∞
is the H∞ norm. For a real vector h, ‖h‖∞ and ‖h‖2 are the
sup and the 2 norms, respectively. Lp denotes the space of
piecewise continuous functions R 7→ Rl of any dimension l
with finite Lp norm, p ∈ [1,∞]; Lp[0, T ] will be used to
denote the subspace such that functions have support [0, T ].
Specifically, for h : R → Rl, ‖h‖L∞

, supt∈R ‖h(t)‖∞,

and similarly, ‖h‖L2
,
√∫∞
−∞ ‖h(τ)‖22 dτ . For Banach

spaces X1 and X2, B(X1, X2) is the space of all bounded



linear operators mapping X1 to X2.  is the imaginary
unit. o(.) denotes the asymptotic little o notation.

B. Linear Repetitive Processes in Banach Space

A general abstract model of a linear repetitive process
assumes an underlying Banach space structure [1]. In par-
ticular, we assume that the output at pass (or iteration) k,
denoted yk, is a vector in a subspace YT of a complete
function space Y , where T < ∞ denotes the duration or
length of the pass profile. Then,

yk+1 = LT yk + uk+1, ∀k ∈ N (1)

where LT , L|YT
is the restriction1 of L ∈ B(Y, Y ), and uk

is a vector in a subspace UT ⊆ YT that represents the effect
of initial conditions, disturbance, noise, and the control input.
A concrete example of the abstract formulation (1) will be
given in the next section through linear differential processes.

Definition 1: The linear repetitive process (1) is asymptot-
ically stable if there exists a positive number υ such that for
any y0 ∈ YT and any strongly convergent sequence {uk}∞k=1,
the output {yk}∞k=1 generated by the perturbed system

yk+1 = (LT + ∆)yk + uk+1, ∀k ∈ N

is strongly convergent for all ∆ ∈ B(YT , YT ) with ‖∆‖ < υ.
Theorem 1 ([1], pg. 44): The linear repetitive process (1)

is asymptotically stable if and only if ρ(LT ) < 1.
As a result of the above theorem, there exist scalars MT > 0
and γT ∈ [0, 1) such that for any constant sequence uk = u
for all k ∈ N

‖yk − y∞‖ ≤MT γ
k
T

(
‖y0‖+

‖u‖
1− γT

)
, ∀k ∈ N,

where y∞ is the strong limit of the sequence {yk}∞k=1.
A stronger notion of stability for these processes is that of

stability along the pass, in which we require that there exist
scalars M and γ ∈ [0, 1) such that MT ≤ M and γT ≤ γ
for all T ∈ [0,∞). The conditions for stability along the
pass of (1) is omitted here; we merely note that this notion
translates to differential repetitive processes as requiring
the dynamics governing the evolution of the state to be
exponentially stable, as we will see in the next section.

III. STATE SPACE FORMULATION OF LINEAR
DIFFERENTIAL REPETITIVE PROCESSES

LTI differential repetitive processes without exogenous
inputs can be represented in state space form as

ẋk+1(t) = Axk+1(t) +Byk(t),

yk+1(t) = Cxk+1(t) +Dyk(t),
(2)

for all t ∈ [0, T ], k ∈ N, where xk(t) ∈ Rn, yk(t) ∈ Rm are
the state and output vectors, respectively, and A,B,C,D
are real matrices of appropriate size which form a minimal
realization. Note that it is also necessary to specify boundary
conditions y0 ∈ L∞[0, T ] and bounded {xk+1(0)}∞k=0 to
uniquely determine the solution.

1Here, we also restrict the codomain of L to YT via some truncation like
operation.

The state space formulation (2) represents only a subset of
the recursion relations that can be defined on the underlying
function space (L2 ∩ L∞)[0, T ], specifically the class of
systems in which the output at iteration k acts in a point-
wise manner on the state derivative and output vectors at
pass k + 1. As a counter example, consider an ILC algorithm
in which the input is synthesized in a noncausal manner.
Clearly, (2) is a highly inaccurate representation for such
a system since information from yk is transmitted to yk+1

only through a causal integration. Similar representations
can be developed for a variety of systems; e.g. discrete
processes, iterative algorithms for nonlinear optimal control
problems [1].

A. Stability

Before stating the basic stability conditions and the 2D
Lyapunov function that will be used in nonlinear stability
analysis, we define the augmented state matrix Φ and the pass
to pass transfer function G(s) of the quadruple (A,B,C,D):

Φ ,

[
A B
C D

]
, G(s) , C(sI −A)−1B +D.

We say that Φ is stable along the pass if its corresponding
linear state space representation is stable along the pass.
Similarly, we say that Φ is Hurwitz if the corresponding
matrix A is Hurwitz. Stability conditions of the linear system
are given below.

Theorem 2 ([1], pg. 49): The linear repetitive process (2)
is asymptotically stable if and only if D is Schur.

Theorem 3 ([1], pg. 62): The linear repetitive process (2)
is stable along the pass if and only if A is Hurwitz, D is
Schur, and ρ(G(ω)) < 1 for all ω ∈ R.

B. The 2D Lyapunov Equation

The 2D Lyapunov equation for linear differential repetitive
processes is given by the following formula:

ΦTW 1,0 +W 1,0Φ+ΦTW 0,1Φ−W 0,1 = −Q = −QT , (3)

where W 1,0 , W1 ⊕ 0 and W 0,1 , 0 ⊕ W2, and the
matrices W1 = WT

1 ∈ Rn×n and W2 = WT
2 ∈ Rm×m.

At first glance, it seems that (3) is a combination of 1D
continuous and discrete time algebraic Lyapunov equations.
However, because of the 2D structure of the system, the two
different LMIs corresponding to these cases cannot be used
to solve (3) (see pg. 169 of [1]). The use of (3) in stability
analysis is given by the following theorem.

Theorem 4 ([1], pg. 130): The linear repetitive process
(2) is stable along the pass if there exist positive definite
matrices W1 and W2 such that the solution Q of the
2D Lyapunov equation (3) is positive definite.

In contrast to the 1D case, the conditions of theorem 4 are
only sufficient for stability, and the eigenvalue conditions on
the system matrices A and D do not guarantee the existence
of W1 > 0 and W2 > 0 that yield Q > 0, save for single
input single output (SISO) systems. However, we can circum-
vent this issue by requiring the slightly stronger condition



that ‖G(s)‖∞ < 1, as is typical in contraction mapping
based ILC with monotonically convergent algorithms.

Lemma 1: For a stable along the pass linear repetitive
process of the form (2), if ‖G(s)‖∞ < 1, then there ex-
ist W1,W2 > 0 such that the solution Q of the 2D Lyapunov
equation (3) is positive definite.

Proof: This follows directly from theorem 4.2.1 of [1].

IV. STABILITY OF NONLINEAR DIFFERENTIAL
REPETITIVE PROCESSES

In this section, we will present the main result of our
manuscript: First, we introduce the mathematical repre-
sentation of nonlinear time invariant differential repetitive
processes, along with the definition of exponential stability
for these systems. We then restate the Lyapunov theorem
from [2] and proceed with the linearization of the nonlinear
system around the origin. Next, we introduce an L1 norm
condition which constrains the trajectories of the system
to a neighborhood of Euclidean space. Finally, using the
asymptotic property of the linear approximation, along with
the L1 norm condition, we show that we can ensure that
the Lyapunov function for the linear system is a local Lya-
punov function for the nonlinear system, thereby concluding
stability.

Consider the following nonlinear model of a time invariant
differential repetitive process without exogenous inputs, with
the same state and ouput dimensions as the linear case:

ẋk+1(t) = f(xk+1(t), yk(t)),

yk+1(t) = g(xk+1(t), yk(t)),
(4)

for all t ∈ [0, T ] and k ∈ N in Rn × Rm. Here, f and g
are continuously differentiable functions that vanish at the
origin. We also assume ‖xk+1(0)‖∞ ≤ κxζ

k for all k ∈ N
and ‖y0‖L∞

≤ κy , for some κx, κy > 0, and ζ ∈ (0, 1).
Definition 2: The system is said to be exponentially sta-

ble (in the L2 sense) if there exist scalars Kx,Ky such
that κx < Kx and κy < Ky imply ‖yk‖L2

≤ K(ζ)χ(ζ)k for
all k ∈ N, for some K : [0, 1)→ R and χ : [0, 1)→ [0, 1).

Remark 1: As opposed to [2], the conditions on the
boundaries are set in terms of the sup norm instead of the 2
norm even though exponential stability is defined in the L2

norm topology. This is rather for convenience and fortunately
does not contradict the 2 norm based conditions of [2] since
all norms in finite dimensions are equivalent.

A. Exponential Stability via Lyapunov Functions

The stability of the equilibrium can be assessed via
Lyapunov functions as shown in [2]: We let V1 : Rn → R,
and V2 : Rm → R be positive definite functions such
that V1(0) = V2(0) = 0. We define the candidate Lyapunov
function for the system as V (x, y) , (V1(x), V2(y)). The
divergence of this function along the trajectories of (4) is
defined as

div (V (xk+1(t), yk(t))) , V̇1(xk+1(t))

+ (V2(yk+1(t))− V2(yk(t))) ,

for all k ∈ N and t ∈ [0, T ].
Theorem 5 ([2]): The nonlinear differential repetitive pro-

cess (4) is exponentially stable in L2 if there exists a
Lyapunov function V with constants c1, c2, c3, with c2 > c3,
such that

c1 ‖x‖22 ≤ V1(x) ≤ c2 ‖x‖22 ,
c1 ‖y‖22 ≤ V2(y) ≤ c2 ‖y‖22 ,

(5)

and
div(V (x, y)) ≤ −c3 ‖(x, y)‖22 . (6)

along the trajectories of (4).

B. Linearized Dynamics

We proceed with the linearization of (4) as follows.
Since f and g are continuously differentiable, application
of the multivariable mean value theorem to (4) means

ẋk+1(t) = Āxk+1(t) + B̄yk(t) + b(xk+1(t), yk(t)),

yk+1(t) = C̄xk+1(t) + D̄yk(t) + d(xk+1(t), yk(t)),
(7)

for all t ∈ [0, T ] and k ∈ N, where

Ā =
∂f

∂x
(0), B̄ =

∂f

∂y
(0),

C̄ =
∂g

∂x
(0), D̄ =

∂g

∂y
(0),

and b(x, y), d(x, y) are continuous functions such that
both ‖b(x, y)‖ , ‖d(x, y)‖ are o(‖(x, y)‖) as (x, y) → 0 in
any norm ‖.‖. We define Φ̄ and Ḡ(s) to be the augmented
state matrix and the pass to pass transfer function, respec-
tively, of the quadruple (Ā, B̄, C̄, D̄). The matrix Φ̄ will also
be called the linearization of (4). In addition, we define the
function ϕ(x, y) , (b(x, y), d(x, y)).

C. Local Stability Analysis through Linearized Dynamics

In analyzing the stability of the nonlinear system through
its linearization, we will need an additional condition that
will aid us by constraining the state and input vectors
to neighborhoods of the origin in Euclidean space. This
condition is stated in terms of the L1 norm of a transfer
function (essentially its induced L∞ norm; see lemmas A.7.1
and A.7.2 of [10]), whose definition is given below. The
necessary result concerning the use of the L1 norm is given
in the appendix (lemma 3), and can be interpreted as a
contraction or a small gain condition in the pass domain.

Definition 3: The L1 norm of a q input r output LTI
system H(s) with impulse response h(t) ∈ Rq×r is defined
as ‖H(s)‖L1

, maxi∈1,2,...,r

∑q
j=1 ‖hij‖L1

, where hij(t)
is the entry at the ith row and jth column of h(t).

We are now ready to state our main result.
Theorem 6: The nonlinear differential repetitive pro-

cess (4) is exponentially stable if its linearization Φ̄ is
stable along the pass, minimal, and the associated pass
to pass transfer function Ḡ(s) satisfies

∥∥Ḡ(s)
∥∥
∞ < 1

and
∥∥Ḡ(s)

∥∥
L1
< 1.

Proof: The proof relies on the construction of an
appropriate Lyapunov function. Specifically, since the lin-
earization is stable along the pass and minimal, and the



pass to pass transfer function satisfies the H∞ contraction
condition, we know from lemma 1 that there exist positive
definite matrices W1 and W2 such that the solution Q of
the 2D Lyapunov equation (3) is positive definite. Hence,
let V1(x) = xTW1x and V2(y) = yTW2y. Then, V1

and V2 satisfy (5) globally with c1 as the minimum of their
eigenvalues, and c2 as the maximum of their eigenvalues.
Also note that c2 can be increased if necessary to satisfy the
condition c2 > c3. Now define z , (x, y). Readers can then
check that the divergence of V satisfies

div (V (z)) = −zTQz

+2

ϕT (z)

[
W1 0
W2C W2D

]
︸ ︷︷ ︸

Λ

z + ϕT (z)

[
0 0
0 W2

]
︸ ︷︷ ︸

Ψ

ϕ(z)

 .

The above equation is indefinite in Rn × Rm. However,
we can use the asymptotic property of the function ϕ to
select an open subset containing 0 in which the divergence
satisfies (6): For all ε > 0, there exists δ > 0 such
that ‖z‖2 < δ implies ‖ϕ(z)‖2 ≤ ε ‖z‖2. Then from above,
we have

div (V (z)) ≤ ‖z‖22
(
2ε2σ̄(Ψ) + 2εσ̄(Λ)−

¯
σ(Q)

)
,

for all z with ‖z‖2 < δ, where Ψ and Λ are matrices defined
above, and σ̄(.) and

¯
σ(.) denote the maximum and minimum

singular values, respectively. Therefore, if we take ε to be
small enough, we can find a δ so that div (V (z)) ≤ −c3 ‖z‖22
for z ∈ Rm × Rn with ‖z‖2 < δ.

It remains to find positive constants Kx,Ky such that
if ‖xk+1(0)‖∞ < Kxζ

k and ‖y0‖L∞
< Ky , the trajectories

of (4) will not leave the open ball of radius δ centered
at 0 ∈ Rn × Rm. Since

∥∥Ḡ(s)
∥∥
L1

< 1, by lemma 3, if
we choose δ̄ = δ/

√
n+m, as ‖z‖2 ≤

√
n+m ‖z‖∞ for

all z ∈ Rn × Rm, we can find κ̄x and δ̄y so the trajectories
of (4) stay in the δ ball, provided ‖xk+1(0)‖∞ < κ̄x < δ̄ for
all k ∈ N and ‖y0‖L∞

< κ̄x < δ̄. Thus, selecting Kx = κ̄x
and Ky = δ̄y , by theorem 5, the system is exponentially
stable.

Remark 2: For SISO systems, it suffices to check the
condition

∥∥Ḡ(s)
∥∥
L1
< 1 since

∥∥Ḡ(s)
∥∥
∞ ≤

√
m
∥∥Ḡ(s)

∥∥
L1

.
See lemma 2 of [11].

Remark 3: The L1 norm condition can be reformulated
so the absolute integral of the impulse is computed only
on [0, T ], to yield less conservative results.

Lemma 3 is crucial in proving our result: Although we
can find a region in Rn × Rm such that the Lyapunov
function satisfies the necessary conditions, it is only by
lemma 3 that we can guarantee that the trajectories stay
uniformly in this region, for all t ∈ [0, T ] and k ∈ N. The
necessity of this additional condition boils down to the fact
that Lp spaces are infinite dimensional, and consequently
convergence in L2 does not imply convergence in L∞2; e.g.

2The converse is true since ‖.‖L2
≤
√
Tm ‖.‖L∞

in our problem.

consider a sequence hk+1(t) = k+ 1 for t ∈ [0, T/(k+ 1)4]
and hk+1(t) = 0 otherwise, for all k ∈ N. Thus, we cannot
use theorem 5 directly to ensure that the trajectories remain
uniformly bounded. As a result, the proof of theorem 6
requires significantly more effort compared to its 1D coun-
terpart (for example, theorem 4.7 of [12]). See the appendix
for the details.

V. APPLICATION TO NONLINEAR ILC DESIGN
AND ANALYSIS

In this section, we have a brief look at how the findings of
the last section applies to nonlinear ILC design and analysis.
Consider the following linearization of a time invariant
system:

ẋk+1(t) = Āxk+1(t) + B̄uk+1,

yk+1(t) = C̄xk+1(t) + D̄uk+1.

We assume without loss of generality that Ā is Hurwitz,
since for the opposite case we can stabilize Ā through state
feedback provided (Ā, B̄) is controllable. Our objective is to
drive the output yk to 0. We consider a proportional update
law whose linearization is uk+1(t) = Q̄uk + L̄yk. Then the
system can be written in the following repetitive process
form:

ẋk+1(t) = Āxk+1(t) + B̄
[
L̄ Q̄

] [yk(t)
uk(t)

]
,[

yk+1(t)
uk+1(t)

]
=

[
C̄
0

]
xk+1(t) +

[
D̄
I

] [
L̄ Q̄

] [yk(t)
uk(t)

]
.

The resulting pass to pass transfer function Ω(s) is given as

Ω(s) ,

[
Ḡ(s)
I

] [
L̄ Q̄

]
,

where Ḡ(s) = C̄(sI − Ā)−1B̄ + D̄ as before. Since A is
Hurwitz, by submultiplicativity, the conditions of theorem 6
can be satisfied as

[
Q̄ L̄

]
→ 0. Therefore, we can find a

locally exponentially stable linear or nonlinear proportional
update law for any nonlinear system whose linearization is
controllable.

A couple of comments are in order here:
1) We observe that when Q̄ = I , which is the nec-

essary and sufficient condition for perfect tracking,
the conditions of theorem 6 cannot be satisfied as
this means ‖Ω(s)‖L1

≥ 1 +
∥∥L̄∥∥L1

. This is rela-
tively surprising, since it is shown in [13], [5] that
convergence can be achieved for a globally Lipschitz
system if

∥∥I − L̄D̄∥∥ < 1 for any induced norm ‖.‖,
albeit in the time weighted norm topology. Based on
this, it might be possible to reformulate the induced
norm condition of lemma 3 in terms of the time
weighted norm. Yet another issue that would need to
be addressed is whether for Q̄ = I , we can find L̄ so
that

ρ

([
D̄
I

] [
L̄ I

])
< 1.

If D is singular, then the above problem is infeasible.
This problem is addressed for linear systems by using



the superposition principle to define new vectors such
that the input does not appear in the state space [2].

2) In essence, “stabilization” of an ILC system does not
make much sense since the control objective in ILC is
uniform transient tracking, wherein the limit profiles
of either the state, input, or the output would be time
varying. In this scenario, translating the coordinates
to ensure that the origin is the equilibrium does not
help with our analysis, since the resulting dynamics
would also be time varying. Theorem 6 needs to be
extended to time varying systems for this scenario,
but this requires the development of 2D time varying
Lyapunov equations, which is outside the scope of this
exploratory work.

VI. ILLUSTRATIVE EXAMPLE

We consider the dynamic model of an actuated pendulum

m̄l̄θ̈k + b̄θ̇k + m̄ḡ sin(θk) = uk/l̄,

where m̄ is the mass of the bob, l̄ is the length of the
rod, θk is the angle between the rod and the vertical axis, b̄
is the rotational damping coefficient, ḡ is the gravitational
constant, and uk is the input torque. Selecting the state
as xk = (θk, θ̇k) and the output as yk = θk , we can
linearize the equations about the origin to obtain the pass
to pass transfer function, denoted H̄(s) here:

H̄(s) =
1

m̄l̄2
1

(s2 + b̄/(m̄l̄)s+ ḡ/l̄)
.

Since H̄(s) is stable for all positive system parameters, we
can satisfy the small gain and Schur conditions of theorem 6
by selecting learning updates with low enough gain around
the origin. Our aim is to stabilize the pendulum for a period
of 10 seconds, i.e. T = 10. We choose the system parameters
as ḡ = 9.81 m/s2, m̄ = 0.1 kg, b̄ = 0.0006 Ns/m, l̄ = 0.3 m,
giving us

∥∥H̄(s)
∥∥
∞ ≈ 971.5. On the other hand, because the

pendulum is locally a harmonic oscillator as b̄ → 0, the L1

norm of the system is going to be extremely high. Thus,
we rely on the finite approximation

∫ T
0
|h̄(t)| dt ≈ 117.1,

where h̄(t) is the impulse response of H̄(s) (see remark 3).
Then, taking the nonlinear update law as

uk+1(t) = 10−4[9uk(t)− 1yk(t)(1 + y2
k(t))],

we can satisfy the conditions of theorem 6. Note that the
gain of the update law increases as we move away from the
equilibrium due to the nonglobally Lipschitz squared term,
which is likely to destabilize the system.

We first consider a scenario wherein the initial input u0

is Gaussian white noise that is scaled after its realization,
so that ‖u0‖L∞

≈ 7.89, and y0 = 0. Similarly, the initial
state xk+1(0) is randomly selected from a uniform distribu-
tion on [0, 0.1(0.62)k] for each k. The resulting output L2

norm sequence is normalized as ‖yk‖L2
/ ‖y1‖L2

for each k.
As expected, fig. 1 shows that for boundary conditions
high in amplitude the system is unstable. To verify that the
system is locally stable, we also conduct a Monte Carlo type
simulation of 100 realizations. For each realization, κx and ζ

Iteration
1 2 3 4 5

E
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or
 N

or
m

100

1050

10100

10150

Fig. 1. Instability of nonlinear ILC with the parameters κx = .1, ζ = 0.62,
and ‖u0‖L∞

≈ 7.89. The boundary conditions were randomly selected
within the constraints imposed by the parameters.

Iteration
100 101 102

E
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or
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or
m

100
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Fig. 2. Locally exponentially convergent behavior of nonlinear ILC over
100 realizations. The blue data points depict the maximum normalized errors
at iteration k, respectively, over all realizations. The dashed black curve is
the exponential decay function 150(0.98)k for all k ∈ N; in other words,
the exponential convergence parameters K(ζ) < 150 and χ(ζ) < 0.98
over all realized ζ.

are randomly chosen from uniform distributions over [0, 0.1]
and [0, 1], respectively. In the same manner, u0 and y0 are
randomly chosen as Gaussian white noise, scaled after their
realizations so that max{‖u0‖L∞

, ‖y0‖L∞
} < 4.27. For

each realized pair (κx, ζ), xk+1 is drawn from a uniform
distribution on [0, κxζ

k], for all k ∈ N 3. The resulting output
sequences are normalized as before. Indeed, as theorem 6
predicts, we see in fig. 2 that the ILC system is locally
exponentially stable, for the boundary parameters Kx = 0.1
and Ky = 4.27.

VII. CONCLUSIONS

We established a differential repetitive processes analogue
of the well known result that the stability of a nonlinear
feedback system can be verified by the stability of the
Jacobian matrix, using the 2D Lyapunov equation and certain
small gain conditions. We also discussed the relevance of this
result as it applies to nonlinear ILC. Future work will extend
the results to different classes of systems.

3The objective of this is to validate that stability holds in a neighborhood
of the origin, and not just for a specific initial state sequence and input.



APPENDIX

We present two lemmas that are helpful in evaluating local
stability. The first establishes bounds on the state vector in
terms of the boundary condition and the output, and will be
used in the proof of the second.

Lemma 2: If the linearization Φ̄ of the nonlinear differ-
ential repetitive process (4) is Hurwitz, then there exist α, β
positive such that ‖xk+1‖L∞

≤ α ‖yk‖L∞
+ β ‖xk+1(0)‖∞

in a neighborhood of the origin in R× L∞.
Proof: This is a result of the small signal finite

gain Lp stability theorem 5.1 of [12]. More specifically, the
differential equation ẋk+1(t) = f(xk+1(t), yk(t)) satisfies
all conditions of corollary 5.1 of [12] since 1) it is time
invariant, and 2) the submatrix Ā of Φ̄ is Hurwitz.

The next lemma gives a uniform boundedness type result
that is used in the proof of theorem 6.

Lemma 3: Assume that the linearization Φ̄ of (4) is
Hurwitz, and its associated pass to pass transfer function
satisfies µ ,

∥∥Ḡ(s)
∥∥
L1

< 1. Then, for all δ̄ > 0, there
exist positive constants δ̄y, κ̄x < δ̄ such that if the boundary
conditions satisfy ‖y0‖L∞

< δ̄y and ‖xk+1(0)‖∞ < κ̄x for
all k ∈ N, we have ‖yk+1‖L∞

< δ̄ and ‖xk+1‖L∞
< δ̄ for

all k ∈ N.
Proof: Take any k ∈ N. We define x̄k+1 and ȳk+1

to be the state and output of a linear differential process
with the augmented state matrix Φ̄ of the linearization,
with x̄k+1(0) = xk+1(0) and ȳk = yk. Since the L1 norm
of an LTI system is its induced L∞ norm, and the initial
condition will decay exponentially, it is straightforward to
check that ‖ȳk+1‖L∞

≤ µ ‖yk‖L∞
+ν ‖xk+1(0)‖∞ for some

positive ν.
Now using (7), the output error between the linear and

nonlinear systems, ỹk+1(t) , yk+1(t)− ȳk+1(t), is given by

ỹk+1(t) = C

∫ t

0

eA(t−τ)b(xk+1(τ), yk(τ)) dτ

+ d(xk+1(t), yk(t)), ∀t ∈ [0, T ].

The convolution integral above is an LTI system with real-
ization (A, I, C, 0) and zero initial conditions, with b as its
input. As A is stable, this means that the integral operator
will have finite L1 norm. Note that both inputs are bounded
by virtue of the piecewise continuity assumption on the
signals and the continuity of ϕ, since we are on a compact
interval. Therefore, we have ‖ỹk+1‖L∞

≤ η ‖ϕk+1‖L∞
for

some positive η, where ϕk+1(t) = ϕ(xk+1(t), yk(t)) with
a slight abuse of notation. Consequently, application of the
triangle inequality on yk+1, and the bound on xk+1(0),
gives us ‖yk+1‖L∞

≤ µ ‖yk‖L∞
+ νκ̄x + η ‖ϕk+1‖L∞

.
Similarly, from lemma 2, there exist positive constants α, β
such that ‖xk+1‖L∞

≤ α ‖yk‖L∞
+ βκ̄x holds in a neigh-

borhood Z ⊆ R × L∞ of the origin; i.e. for some δz > 0
such that ‖yk‖L∞

< δz and ‖xk+1‖∞ < κ̄x < δz .
Now recall that ‖ϕ(z)‖ is o(‖z‖) as z → 0, for any

given norm ‖.‖. Let ε , ((1 − µ)/(3η)) min{1, α−1}.
Then there exists δ > 0 such that if ‖z‖∞ < δ, then we

have ‖ϕ(z)‖∞ ≤ ε ‖z‖∞. We choose any δ̄x < min{δ, δz}
positive, and let δ̄y , (δ̄x/2) min{1, α−1}. We claim that if

κ̄x ∈
(

0,min

{
δ̄x,

δ̄x − αδ̄y
β

,
(1− µ)δ̄y − ηεδ̄x

ν

})
, (8)

and ‖yk‖L∞
< δ̄y , wherein κ̄x < δ̄x ensures that the

boundary satisfies ‖xk+1(0)‖∞ < δ̄x, and the reader can
verify that the set is nonempty, then

‖xk+1‖L∞
< αδ̄y + βκ̄x < δ̄x,

‖yk+1‖L∞
< µδ̄y + νκ̄x + ηεδ̄x < δ̄y.

Indeed, if the above conditions are met, (xk+1(0), yk)
is in Z, the region of the space where small signal finite
gain stability holds, and the first inequality can be shown
to be valid via lemma 2 and routine manipulations. Then,
since ‖xk+1‖L∞

< δx and ‖yk‖L∞
< δx with δx < δ,

the trajectory (xk+1(t), yk(t)) is constrained to a region
where ‖ϕ(xk+1(t), yk(t))‖∞ ≤ εδ for all t ∈ [0, T ], and
the second inequality can also be shown to be true. Hence
we have found a neighborhood of the origin in L∞ × L∞
that is invariant in the pass domain. It follows by induction
that if we have ‖y0‖L∞

< δ̄y and ‖xk+1‖∞ < κ̄x for
all k ∈ N, for any κ̄x satisfying (8), then ‖yk‖L∞

< δ̄y
and ‖xk+1‖L∞

< δ̄x for all k ∈ N.
Since our choice of δ̄x was arbitrary up to an upper bound,

setting δ̄ = δ̄x (as δ̄y < δ̄x) completes the proof.
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