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Abstract

Iterative learning control (ILC) is an efficient way of improving the tracking performance of repetitive systems. While
ILC can offer significant improvement to the transient response of complex dynamical systems, the fundamental
assumption of iteration invariance of the process limits potential applications. Utilizing abstract Banach spaces as our
problem setting, we develop a general approach that is applicable to the various frameworks encountered in ILC. Our
main result is that robust invariant update laws lead to stable behavior in ILC systems, where iteration varying systems
converge to bounded neighborhoods of their nominal counterparts when uncertainties are bounded. Furthermore, if
the uncertainties are convergent along the iteration axis, convergence to the nominal case can be guaranteed.
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1. Introduction

Iterative learning control (ILC) has been recognized
as an efficient way of improving the tracking perfor-
mance of repetitive systems since the early 1980s (Ari-
moto et al., 1984). ILC can offer significant improve-
ment to the transient response of complex dynamical
systems with a high level of uncertainty through rela-
tively simple algorithms (Bristow et al., 2006; Moore,
1993). The fundamental assumption that enables the
success of these algorithms has been iteration invari-
ance of the: 1) plant dynamics, 2) exogenous distur-
bances, 3) initial conditions, and 4) reference signals.
This assumption greatly simplifies the ILC problem and
enables the control engineer to design an asymptotically
stable recurrence relation in the iteration domain by em-
ploying a contraction mapping. Even though the as-
sumption is unrealistic, similar to feedback control of
linear time invariant (LTI) systems, it yields good results
in practice provided that the variation of the process (dy-
namics, exogenous disturbances, initial conditions etc.)
from trial to trial is small.
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Figure 1: Feedback control in the iteration domain interpretation of
ILC: The integral action of the control law ensures that the output yk
converges to r for constant dk = d for the static plant P̄, provided the
feedback loop is stable. Here, w−1 represents the trial delay operator,
and dk is a term that represents disturbances and the effect of initial
conditions.

1.1. The Feedback Analogy

The restrictive nature of the invariance assumption
is perhaps best understood via an analogy to feedback
control, since a common interpretation of ILC is that
of a feedback controller in the iteration domain, as per
the following discussion: Let P̄ : U → Y be a bounded
linear operator, where U is the space of admissible in-
puts and Y is the space of outputs. Assuming that P̄ is
known and there are no exogenous signals apart from uk

affecting the output, the classical ILC problem can be
stated as that of finding a controller C that maps the in-
put history u0, u1, . . . , uk−1 ∈ U to the current input uk,
such that the output yk = P̄uk converges to a desired ref-
erence r in the image of P̄ as k → ∞. In most cases, C
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is designed to consider only the previous iteration, thus
giving rise to the name first order ILC. The internal
model principle then dictates that the controller (up-
date law) C includes integral action to guarantee perfect
tracking in the limit, so C(uk) = uk−1 + L(r − P̄uk−1), as
can be seen in Figure 1, which guarantees yk → r even
in the case where the output is corrupted by a constant
vector d ∈ Y such that yk = P̄uk +d. Essentially, the ILC
problem is that of designing a “time” invariant feedback
controller for a constant static plant to track step refer-
ences (Moore, 1993), under the assumption of constant
disturbance signals.

The objective of this paper is to generalize the ILC
problem by relaxing the invariance assumption, which
restricts the feedback analogy to setpoint tracking, and
fails to capture the generality associated with the feed-
back paradigm. In practice, initial conditions and dis-
turbances are always subject to variations, while ref-
erences and plants can commonly appear as outputs of
higher order internal models (HOIMs)1 in the context of
robotic manipulators doing different tasks, or freeway
traffic models (Hou et al., 2012).

1.2. Literature Review
Linear feedback control encompasses a wide array

of problems and their accompanying solutions, such
as stabilization, robustness, optimality, sensitivity re-
duction, fundamental limitations, and design trade-offs.
Since the 1990s, there has been an increased effort in
the ILC community to generalize the classical prob-
lem in these directions. These include the synthesis
of 1) robust ILC algorithms (Norrlöf, 2004; Ahn et al.,
2007b; van de Wijdeven et al., 2009; Bristow, 2010;
Moon et al., 1998; De Roover and Bosgra, 2000; Altın
and Barton, 2014), 2) norm optimal ILC algorithms
with quadratic cost functions, 3) adaptive ILC (AILC)
methodologies (French et al., 1999; Tayebi, 2006; Tian
and Yu, 2003; Wang et al., 2004), along with the study
of performance guidelines and design trade-offs (Ahn
et al., 2007b; Moore and Lashhab, 2010; Pipeleers and
Moore, 2012). See also Bristow et al. (2006); Ahn et al.
(2007a); Xu (2011) and the references therein.

Implicit in the vast majority of these earlier works
is the invariance assumption in some form. To date,
there has been relatively limited material attempting to
relax these assumptions. Among these, initial condition
invariance was by far the most discussed topic earlier

1That is, systems wherein the plant operator Pk at trial k is a func-
tion of Pk−1, Pk−2, . . . , Pk−n for some n. However, to the best of our
knowledge, there have been no studies on whether HOIMs occur nat-
urally in physical systems.

in the literature, since perfect resetting can be hard to
achieve for certain systems (Heinzinger et al., 1992).
The central result of Heinzinger et al. (1992) shows
that initial condition resetting errors and bounded distur-
bances affect the tracking error continuously, provided
they are uniformly bounded in the iteration domain. The
effects of varying disturbance signals have been stud-
ied in stochastic settings (Bristow, 2010; Norrlöf, 2004;
Ahn et al., 2007b; Saab, 2006). Varying references are
also increasingly studied in ILC theory; AILC is one
of the avenues in which this objective is pursued (Xu
and Xu, 2004; Xu, 2011), while some other works con-
sider parametrizing the set of references by basis func-
tions (Hoelzle et al., 2011; Bolder and Oomen, 2015;
Bolder et al., 2014; van Zundert et al., 2016) or library
based interpolations (Hoelzle and Barton, 2012). Lastly,
iteration varying plant models are actively studied in the
case that they can be described by a HOIM (Yin et al.,
2010), with generalizations to iteration varying refer-
ences and signals considered in Zhu et al. (2015).

Despite all these efforts, the feedback interpretation
of ILC still paints mostly an incomplete picture, and
lacks the fundamental notions of asymptotic and input-
output stability. In this sense, the introduction of the w
transform (z transform in the iteration domain) in Chen
and Moore (2002) has been crucial in adopting a more
holistic view of ILC as an input-output system, induced
by feedback control in the iteration domain. The trans-
form enables the integration of iteration varying sig-
nals into the ILC problem and is a good step towards
the establishment of input-output stability properties in
ILC. However, it restricts the analysis to iteration in-
variant plants and update laws. On the other hand,
while Norrlöf and Gunnarsson (2002) presents a frame-
work to investigate the stability of discrete time itera-
tion varying systems, the analysis is restricted to itera-
tion invariant signals. Finally, a robust ILC framework
for discrete time systems in state space form is analyzed
recently in Meng and Moore (2016, 2014), wherein the
treatment is limited to classical D-type ILC algorithms.
While the results of these two papers are theoretically
important, the authors make no comments on how the
learning gain matrices can be designed when the sole
information on the uncertainty is boundedness.

Our aim in this paper is to construct a general frame-
work encapsulating a broad class of systems in order
to, 1) analyze stability properties of ILC in the pres-
ence of iteration varying signals (including references)
and plant operators, where the operators are assumed to
belong to a bounded set and otherwise unknown, and
2) connect our analysis to the robust ILC literature by
showing that robust updates lead to stable behavior in
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ILC. In addition, we will compare the performance of
this uncertain iteration varying system to its nominal in-
variant counterpart, discuss how nominal performance
can be recovered, and verify the theory with simulation
examples and experimental implementation.

1.3. Organization of the Paper

The remainder of the manuscript is organized as fol-
lows: Section 2 introduces preliminaries and the ILC
problem. Section 3 proves the basic boundedness re-
sult of the algorithm. In Section 4, asymptotic perfor-
mance and design trade-offs are investigated. Section 5
describes the experimental setup, which also forms the
basis for the simulation examples. Simulation examples
are presented in Section 6, with the experimental results
following in Section 7. Finally, concluding remarks are
given in Section 8.

2. Background and Problem Statement

Consider the classical first order ILC problem dis-
cussed in Section 1. We assume U and Y to be Banach
spaces equipped with suitable norms. We base this as-
sumption on the fact that Banach spaces are the natural
settings of contraction mapping based ILC, which relies
on the Banach fixed point theorem. Furthermore, Lp

and lp spaces, the natural framework for one dimen-
sional dynamic systems, are complete. The motivation
for this assumption is to come up with a general frame-
work that contains the variety of different settings in
ILC, consistent with the vector space approach in Moore
(1993).

The Banach space framework is discussed further
in Appendix A. For simplicity, the reader can assume P̄
to be an appropriate real lower triangular (causal) ma-
trix describing a discrete time linear system, or a stable
transfer function P̄(s), without any loss of generality.

2.1. Notation and Preliminaries

We take N to represent the set of nonnegative integers
and N+ the set of positive integers. For normed vector
spaces X and V , B(X,V) is the space of all bounded lin-
ear operators from X to V . We use ‖.‖ to denote vec-
tor and induced operator norms in the relevant spaces.
For a family of operators indexed by a subset of N, the
product notation indicates the composition of the oper-
ators in increasing order; e.g.

∏k
i= j Hi , HkHk−1 . . .H j

for j ≤ k and
∏k

i= j Hi , I for j > k, where I is the
identity. The uniform distribution over [a, b] is de-
notedU(a, b).

For a rigorous study of the convergence and sta-
bility properties of the iterative problem, we define
the spaces2 Uω ,

∏
k∈N U and Yω ,

∏
k∈N Y . An el-

ement x in these spaces will be defined so xk de-
notes the kth coordinate. We will use this notation
to refer to any sequence of objects in the same space,
e.g. x , (x0, x1, . . . ) where each xk can be an element
of U, Y , or an operator in these spaces. In addition, we
introduce the following definitions where the spaces X
and V are in {U,Y}.

Definition 1. Let x be an element of Xω. The norm of x
is given by ‖x‖ , supk∈N ‖xk‖; x is said to be bounded
if ‖x‖ is finite.

Definition 2. A linear mapping H : Xω → Vω is
bounded-input bounded-output (BIBO) stable if there
exist a finite constant ε such that

‖(Hx)κ‖ ≤ ε‖(x)κ‖, ∀x ∈ Xω,∀κ ∈ N,

where (x)κ , (x0, x1, . . . , xκ, 0, 0, . . . ) is the truncation
of x.

Definition 3. Let x, v ∈ Xω. We say x converges to v
if limk→∞ ‖xk − vk‖ = 0. Otherwise, if

lim sup
k→∞

‖xk − vk‖ < ∞,

we say x converges to a bounded neighborhood of v.

Definition 4. Let Hk ∈ B(X, X). The system defined by
the equality xk+1 = Hk xk for all k ∈ N is asymptotically
stable if there exists a scalar ε such that ‖x‖ ≤ ε‖x0‖,
and x converges to 0 for all x0 ∈ X.

The framework described above will enable us to
adopt a holistic signal space approach to ILC, with
the closed loop system (in the iteration domain) as the
input-output operator, so stability and convergence can
be studied for the case of iteration varying factors.

2.2. System Dynamics
Based on the above, we consider the following class

of systems:

yk = Pkuk + dk, ∀k ∈ N, (1)

where yk ∈ Y is the output, uk ∈ U is the input, dk ∈ Y is
the exogenous signal that includes disturbances and the
effect of initial conditions, and Pk is the iteration vary-
ing linear input-output operator. Moreover, we assume
that each Pk is in the vicinity of the known bounded lin-
ear operator P̄ as stated in the following assumption.

2The notation Rω typically stands for the product R × R × . . .,
hence Uω,Yω.
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Assumption 1. The input-output operators lie in a
neighborhood of P̄. In other words, there exists a finite
real constant ρ such that

Pk ∈ P ,
{
H ∈ B(U,Y) : ‖H − P̄‖ < ρ

}
, ∀k ∈ N.

Due to the assumption that the process variables Pk

and dk are varying along the iteration axis, it is a
straightforward matter to assume that the reference is
also subject to variations from trial to trial. Thus, our
objective is to solve the following problem:

Problem 1. Find an ILC update law such that the error
vector e defined by ek , rk − yk for all k ∈ N, where the
reference rk is in the image of P̄ for all k ∈ N, converges
to a small neighborhood of 0.

As with the plant operators, we make a boundedness
assumption on r.

Assumption 2. The reference vectors lie in a neighbor-
hood of a nominal reference r̄ in the image of P̄. In other
words, there exists a finite real constant ζ such that

rk ∈ R ,
{
h ∈ P̄(U) ⊂ Y : ‖h − r̄‖ < ζ

}
, ∀k ∈ N.

3. Stability of Iteration Varying Systems with Ro-
bust Update Laws

This section will detail the stability analysis of our
proposed solution to Problem 1. The solution will
generalize the findings of Norrlöf and Gunnarsson
(2002) along the abstract contraction mapping approach
of Moore (1993), and connect the iteration varying
problem to the robust ILC literature. Consider the most
general linear iteration invariant update law

uk+1 = Quk + Lek, ∀k ∈ N, (2)

where Q and L are bounded, and u0 is arbitrary. Fur-
thermore, we will require the update law to be subject
to the robustness condition

‖Q − LH‖ ≤ γ < 1, ∀H ∈ P, (3)

for some real constant γ, which guarantees monotonic
convergence for all H ∈ P when the system is iteration
invariant.

Remark 1. As opposed to Meng and Moore (2016), we
consider only iteration invariant update laws, which en-
ables us to connect our analysis to the robust ILC lit-
erature. While the ensuing analysis holds for iteration
varying update laws, it is not yet clear how such iter-
ation varying update laws may be designed since the
plant variations considered in our work are unknown.

Condition (3) is a sufficient condition for asymptotic
stability of the iteration varying input equation, as we
shall see below. When the spaces U and Y are finite
dimensional, i.e. Q, L, and all H ∈ P have matrix
representations, (uniform/robust) asymptotic stability is
equivalent to the joint spectral radius of the bounded set
of operators (Q − LP) being strictly less than 1, which
is conjectured to be an undecidable problem (Blondel
et al., 2004).

Substituting (1) into the update law (2) yields the re-
currence relation

uk+1 = Tkuk + Lηk, ∀k ∈ N, (4)

where Tk , Q − LPk and ηk , rk − dk. The solution of
the input vector in terms of u0 and ηk can then be given
as

uk+1 =

 k∏
i=0

Ti

 u0︸      ︷︷      ︸
Natural response

+

k∑
i=0

 k∏
j=i+1

T j

 Lηi︸               ︷︷               ︸
Forced response

, ∀k ∈ N. (5)

Equation (4) defines a “time” (iteration) varying discrete
dynamical system on the space U. As such, its solu-
tion (5) is conceptually the same as that of a discrete
time system on Rn. When (3) holds, since ‖Tk‖ ≤ γ < 1,
it is easy to see that (4) is a well-defined, stable dynam-
ical system.

Proposition 1. The linear iterative system described
by (4) with η = 0, subject to (3), is asymptotically stable.

Proof. Assume (3) holds and η = 0. Take any u0 ∈ U.
Then from (5), ‖uk+1‖ ≤ γ

k+1‖u0‖. Since γ < 1, it fol-
lows that u converges to 0 and ‖u‖ ≤ ‖u0‖. Therefore,
system (4) is asymptotically stable.

Proposition 2. The linear iterative system described
by (4) with input η, subject to (3) and the equal-
ity u0 = 0, is BIBO stable.

Proof. Assume (3) holds and u0 = 0. Take any η ∈ Yω.
Then from (5) we have

‖uκ+1‖ ≤

κ∑
i=0

γκ−i‖L‖‖(η)κ‖ =
1 − γκ+1

1 − γ
‖L‖‖(η)κ‖

≤
‖L‖‖(η)κ‖

1 − γ
≤
‖L‖‖(η)κ+1‖

1 − γ
, ∀κ ∈ N,

where we use the fact that the truncated norm is mono-
tonically increasing by definition. Using the same prop-
erty, we can show by the above inequality that

‖(u)κ‖ = max
i=1,...,κ

‖ui‖ ≤
‖L‖‖(η)κ‖

1 − γ
, ∀κ ∈ N. (6)

Therefore, system (4) is BIBO stable.
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We showed that the recursion relation (4) is asymptot-
ically and BIBO stable when subject to (3). We finish
this section with the following theorem, which shows
that u and y are bounded if d is bounded.

Theorem 1. The signals u and y of the linear iterative
system (1) with the update law (2) is bounded if d is
bounded.

Proof. Consider the solution (5) of the input u, which
is the superposition of the natural response describing
the asymptotic response to the initial condition u0, and
the forced response describing the input-output behav-
ior due to η. Since r is bounded by Assumption 2, η is
bounded if d is bounded. From Propositions 1 and 2, it
follows that u is bounded. Now observe that

‖yk‖ ≤ ‖Pk‖‖uk‖ + ‖dk‖ ≤ ‖Pk‖‖u‖ + ‖d‖, ∀k ∈ N,

by (1). Since the set P is bounded, it follows that y is
bounded.

The results of this section show that an ILC update
law can be safely applied on iteration varying systems,
provided the update law is designed to be robust against
plant uncertainties. Based on the nature of the underly-
ing spaces U,Y , and the operator set P, this update law
can be designed using existing robust ILC techniques.

4. Asymptotic Performance and Design Trade-offs

Having shown that the ILC system with our proposed
solution is well-posed under the robustness assumption,
we will direct our attention to the asymptotic perfor-
mance of the system, when compared to a nominal it-
eration invariant system. One motivation for analyz-
ing these systems in general, as opposed to systems
where Q = I, is that perfect tracking can be an infeasi-
ble objective for various reasons. For example, the setP
might be too big, so (3) cannot be satisfied for Q = I.
As such, we will introduce a nominal iterative system
via the known operator P̄ and reference r̄ under the as-
sumption that d = 0, which will facilitate our analysis.
The results of this section will be stated without proof
to keep the discussion at a high level; interested read-
ers are referred to Altin and Barton (2015) for detailed
explanations.

4.1. Asymptotic Response of the System and the Corre-
sponding Nominal Dynamics

As the choice of u0 has no effect on the input (5) as
the iteration index k → ∞, we will drop the natural re-

sponse from (5), and consider

uk+1 ,
k∑

i=0

 k∏
j=i+1

T j

 Lηi,

ek , −Pkuk + ηk,

(7)

for all k ∈ N, where u0 = 0.
We define the nominal asymptotic system to be the

case where the signal d = 0 and the plant Pk = P̄ for
all k ∈ N. In other words, we describe the nominal sys-
tem as

ȳk = P̄ūk, ∀k ∈ N,

where ȳk ∈ Y is the nominal output and ūk ∈ U is the
nominal input. Thus, the error dynamics of the nominal
system are given by the relation below, where η̄ , r̄:

ēk = −P̄ūk + η̄, ∀k ∈ N.

We take the update law as ūk+1 = Qūk + Lēk, with Q
and L the same as before. Consequently, since the
choice of ū0 has no effect in the limit, we consider

ūk+1 ,
k∑

i=0

 k∏
j=i+1

T̄

 Lη̄,

ēk , −P̄ūk + η̄,

(8)

for all k ∈ N, where T̄ , Q − LP̄ and ū0 = 0. This nom-
inal system is well known to be stable and convergent,
with the limits ū∞ , limk→∞ uk and ē∞ , limk→∞ ek,
when (3) holds.

4.2. Asymptotic Learning Performance

We will now analyze the performance of the algo-
rithm (2) on the ILC system. Towards that end, based on
the results of the previous section, we will compare the
dynamics (7) and (8) written below in recursive form:

ūk+1 = T̄ ūk + Lη̄, ∀k ∈ N, (9)

uk+1 = Tkuk + Lηk, ∀k ∈ N. (10)

The equalities above will enable us to show that the iter-
ation varying ILC system converges to a bounded neigh-
borhood of the nominal invariant system. In showing
this result, the main idea is to subtract the system (10)
from the nominal dynamics (9) and come up with a sta-
ble recursion, driven by the bounded uncertainties due
to P, r, d.

Theorem 2. Assume that the linear iterative system de-
scribed by (1) with the update law (2) is subject to (3).
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Then, if d is bounded, u and e converge to a neighbor-
hood of ū and ē, respectively. In other words,

lim sup
k→∞

‖ũk‖ ≤ ‖L‖
ρ‖ū∞‖ + ζ + ‖d‖

1 − γ
, (11)

and

lim sup
k→∞

‖ẽk‖ ≤

(
‖L‖
‖P̄‖ + ρ

1 − γ
+ 1

)
× (ρ‖ū∞‖ + ζ + ‖d‖) . (12)

In addition, if the input-output operator and the ref-
erence converge to the nominal case, and d converges
to 0, it can be shown that the ILC system converges to
the nominal invariant system, as discussed in the fol-
lowing theorem. Here, convergence of P to P̄ is to be
interpreted as limk→∞ ‖Pk − P̄‖ = 0 as in Definition 3.

Theorem 3. Assume that the linear iterative system de-
scribed by (1) with the update law (2) is subject to (3).
Then, if P converges to P̄, r converges to r̄, and d con-
verges to 0, u and e converge to ū and ē, respectively.

Theorems 2 and 3 are significant results for the fol-
lowing reasons: First, the bounds in (11) and (12)
are continuous increasing functions of the uncertain-
ties quantified by the scalars ρ, ζ, and the disturbance
magnitude ‖d‖. As such, decreased levels of uncer-
tainty imply that system response can be guaranteed to
be closer to its nominal counterpart. Moreover, in the
case where ρ = ζ = 0 and d = 0, (11) and (12) pre-
dict that the asymptotic response is equal to that of the
nominal system, as expected. Second, in the case that
the uncertainties vanish asymptotically, we can guaran-
tee that the nominal response can be recovered in the
limit.

4.3. Design Trade-offs

As in the iteration invariant case, it is trivial to show
that γ is a measure of the convergence speed3 of the
algorithm: Recall from Section 1 that the input and er-
ror converge to the forced response of the ILC system.
Furthermore, we saw in Section 3 that the effect of the
initial input vanishes geometrically with rate γ. Hence,
lower values of γ correspond to faster convergence to
the forced response of the system, and vice versa.

Let α , ‖L‖/(1 − γ). We note that from (6), the
bound ‖ū∞‖ ≤ α‖r‖ can be derived for the nominal case.

3More strictly, the convergence speed of the algorithm would be
the smallest γ satisfying (3).

Plugging this into (11) and (12), without loss of general-
ity, it is easy to see that both the input and output asymp-
totic errors (lim supk→∞ ‖ũk‖ and lim supk→∞ ‖ẽk‖) de-
crease as α decreases. Moreover

lim
α→0

(
lim sup

k→∞
‖ũk‖

)
= 0,

and

lim sup
α→0

(
lim sup

k→∞
‖ẽk‖

)
≤ ζ + ‖d‖,

since limα→0 ‖ū∞‖ = 0 by (6). However, we note that
decreasing α might come at the expense of steady state
performance. In the simulation examples and experi-
mental implementation, we will use this fact to design
optimal algorithms given steady state performance con-
straints.

4.4. Constrained Optimal Design for Predictable Per-
formance

By definition of α, the ILC problem can be formu-
lated as a constrained minimization of the following
form:

minimize
Q∈B(U,U)
L∈B(Y,U)

‖L‖
1 − γ̄

subject to γ̄ = ‖Q − LP̄‖ + ρ‖L‖ ≤ σ < 1,

‖I − P̄(I − Q + LP̄)−1L‖ ≤ β,

(13)

for some σ ∈ [0, 1) and β ∈ (0,∞). In (13), the con-
straint ‖Q − LP̄‖ + ρ‖L‖ ≤ σ < 1 is the robust stability
criterion derived by applying the triangle inequality on
the uncertainty set P described by Assumption 1. This
constraint can be relaxed as

sup
H∈P
‖Q − LH‖ ≤ σ < 1,

at the expense of computational complexity. On the
other hand, the constraint ‖I − P̄(I − Q + LP̄)−1L‖ ≤ β
sets a limit on the allowable nominal steady state er-
ror ē∞ since

ȳ∞ = P̄(I − (Q − LP̄))−1Lr̄, (14)

and therefore

ē∞ = (I − P̄(I − Q + LP̄)−1L)r̄.

Thus, the objective of the nonlinear program (13) is
to find a robust linear ILC update law with guaran-
teed nominal steady state performance, that minimizes
the deviations from the nominal system. The pro-
gram (13) will be solved numerically via the MATLAB
command fmincon and verified via simulations and ex-
periments in the following sections.
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5. Description of the Experimental Setup

This section describes the experimental setup that
will be used to verify the findings of the previous sec-
tions. We will be working with single-input single-
output (SISO) discrete time linear dynamic systems
over a fixed finite horizon, i.e. the spaces U = Y = Rn

for some positive integer n, equipped with the 2 norm.
Hence, given any x ∈ (Rn)ω = Rn × Rn × . . ., we have

‖x‖ , sup
k∈N
‖xk‖2,

where ‖.‖2 denotes the 2 norm. Note that since all norms
in Rn are equivalent, it suffices to pick any norm satis-
fying the robustness condition (3) in order to conclude
stability. Although the maximum norm is a more natural
choice for Rn due to Definition 1, we choose the 2 norm
for practical purposes since the root mean squared er-
ror is the metric of interest for many applications, e.g
manufacturing.

The plant set P is a bounded set of n × n lower tri-
angular (causal) nonsingular matrices. Similarly, the
learning operators Q and L are n × n real matrices.
Here, the inherent delay of the plant is ignored by shift-
ing the output (Bristow et al., 2006). For example, if
the system has relative degree 1, we consider the matrix
equation yk = P̄uk, where

uk ,
[
uk(0) uk(1) . . . uk(n − 1)

]T
,

yk ,
[
yk(1) yk(2) . . . yk(n)

]T
.

(15)

Similarly, the reference vector is given as

rk ,
[
rk(1) rk(2) . . . rk(n)

]T
. (16)

5.1. Plant Description
The experimental setup considered in our work is an

Aerotech ALS 25010, a low profile high accuracy linear
motion stage, controlled through dSPACE. The specifi-
cations of the stage (the Y stage) are detailed in Table 1.
The stage is mounted onto a similar Aerotech stage (the
X stage), which in turn is connected to a 600×900 mm
TMC breadboard. The motion ranges of the two stages
are orthogonal to each other in Cartesian coordinates,
thereby forming a dual axis XY type motion control
platform. For simplicity, the latter of the stages is sta-
bilized at a fixed position by a proportional-integral-
derivative (PID) controller, and the overall setup is
treated as a single axis motion stage.

4The travel speed and linear acceleration are limited to 300 mm/s
and 3 m/s2, respectively, by the software.

Figure 2: The experimental setup.

Table 1: Specifications of Aerotech ALS 250104

Total Travel 100 mm
Servomotor Brushless Linear
Encoder Noncontact Linear
Resolution 0.001-0.2 µm
Maximum Travel Speed 2 m/s
Maximum Linear Acceleration 30 m/s2

Accuracy ±1 µm

5.2. Closed Loop Identification
The Y stage is controlled by a PID controller (imple-

mented at 1 kHz), resulting in the closed loop comple-
mentary sensitivity function

Tcl(s) = KKp(Kds2 + s + Ki)

×
1

Ms3 + (C + KKpKd)s2 + (D + KKp)s + KKpKi
,

where the controller has proportional gain Kp = 5, inte-
gral gain Ki = 0.3, and derivative gain Kd = 3.51×10−3.
The function Tcl(s) is derived by combining the PID
controller and the open loop empirically identified sec-
ond order model with mass M = 1 kg, damping coeffi-
cient C = 55 Ns/m, spring coefficient D = 2.6 N/m, and
open loop gain K = 6660.

It is well known that arbitrary small open loop model-
ing errors can lead to arbitrarily large closed loop mod-
eling errors (Albertos and Sala, 2002). The identified
closed loop model Tcl(s) is inaccurate for our purposes
since ILC requires a relatively high bandwidth5. As
such, a closed loop identification experiment at 1 kHz

5For SISO linear discrete time ILC, the relative degree and the
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is performed in order to have an accurate impulse re-
sponse of the closed loop, which can be used to con-
struct the lower triangular Toeplitz plant matrix P̄. This
is done by sending a Heaviside step signal as the de-
sired reference and differentiating the output signal. The
first 200 samples of the identified impulse response are
shown in Figure 3, where the signal is compared to the
response T disc

cl (z) derived by discretizing Tcl(s) at 1 kHz.

5.3. The Desired Output
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Figure 3: Modeled (via T disc
cl (z)) and empirically identified closed loop

impulse responses.

The used reference signal is shown in Figure 4. It is
a smooth ramp up and down signal at 1 kHz and lasts
for 1 s. The signal covers approximately 75 percent of
the Y-stage range and sets the velocity close to the soft-
ware limit so that the reference is as challenging as pos-
sible, without excessive acceleration and jerk. This is
done to avoid oscillations of the base that carries the
breadbord and hence uncontrollable perturbations.

5.4. Plant Perturbations

Several weights varying between 100 g and 1.5 kg are
used to perturb the experimental setup: During the ex-
periments, these weights are placed on the Y stage ac-
cording to a predetermined sequence S that was ran-
domly chosen. As a result of the increased mass, the
closed loop impulse response is perturbed. The mag-
nitude of the perturbations are roughly estimated to
be ρ = 0.01 in terms of the uncertainty description of
Assumption 1.

sign of the first nonzero Markov parameter is all that is needed for a
stable update law. Similarly, for SISO linear continuous time ILC, the
relative degree and the sign of the corresponding feedthrough term is
necessary and sufficient to design a stable update law. However, the
variety of algorithms that can be used with such limited information
is small, and may result in slower convergence.
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Figure 4: The desired output.

6. Simulations

As stated in Section 5, we will be working with
the spaces U = Y = Rn for some positive integer n,
equipped with the 2 norm. The plant set P is composed
of n × n lower triangular nonsingular matrices, and the
nominal plant P̄ is derived from the closed loop iden-
tified impulse response (solid blue line) shown in Fig-
ure 3, unless otherwise stated. The objective of this sec-
tion is twofold. First, the input-output stability of sev-
eral well-known ILC algorithms under iteration varying
uncertainties will be verified via simulation. Second, for
certain classes of update laws, we will attempt to mini-
mize the bounds on lim supk→∞ ‖ẽk‖ using the nonlinear
program (13) to obtain more predictable performance.
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H  Uncertain ILC

Norm-Optimal ILC
Inverse ILC

Figure 5: Comparison of several first and higher order algorithms
under random perturbations. All algorithms maintain stability and
boundedness under iteration varying disturbances and uncertainties.
The higher orderH∞ ILC algorithms exhibit significantly slower con-
vergence compared to the first order algorithms. While inverse ILC
converges in a single iteration, it has a higher steady state error, since
it is sensitive to plant uncertainties and disturbances.

6.1. Stability under Iteration Varying Perturbations
Figure 5 compares the performance of four differ-

ent ILC algorithms in the presence of trial varying un-
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certainties and disturbances. The additive plant un-
certainty (Pk − P̄) is chosen to be a lower triangular
random matrix, where each nonzero entry is drawn
from U(−0.005, 0.005). Similarly, disturbances are
considered to be a combination of input and out-
put disturbances din

k , d
out
k , where each entry is drawn

fromU(−0.0025, 0.0025).
The ILC algorithms considered in this scenario are

listed as follows:

1. H∞ ILC for certain systems.
2. H∞ ILC for uncertain systems.
3. Norm optimal ILC, in which the quadratic cost

function J is minimized by solving for uk+1 with-
out constraints;

J = eT
k+1Week+1 + uT

k+1Wuuk+1

+ (uk+1 − uk)T W∆u(uk+1 − uk), (17)

where We,Wu,W∆u are positive (semi) definite ma-
trices. To simplify the problem further for the
norm optimal framework (17), we will assume that
these weighting matrices are scalar multiples of the
identity matrix, so We = we, Wu = wu, W∆u = w∆u.
The algorithm in Figure 5 is derived by set-
ting the weighting parameters as we = 1, wu = 0,
and w∆u = 0.5, which are heuristically tuned.

4. Inverse ILC, i.e. Q = I and L = P̄−1. Note that the
matrix P̄ is invertible since the plant set P com-
prises nonsingular matrices.

The H∞ type ILC algorithms are described in detail
in Ahn et al. (2007a) and in general yield higher or-
der (up to order n for n samples) algorithms. However,
it is a straightforward exercise to extend our analysis
to nth order algorithms by augmenting (1); e.g. we can
consider yaug

k = (ykn, ykn+1, . . . , ykn+n−1). The reader can
see in Figure 5 that all algorithms maintain stability and
boundedness under iteration varying disturbances and
uncertainties. It is also worth noting that the higher or-
derH∞ ILC algorithms exhibit significantly slower con-
vergence compared to the first order algorithms.

Remark 2. A contraction based analysis is not obvious
with the typical state augmentation

uaug
k = (uk, uk+1, . . . , uk+n−1).

For example, if the norm of the space Un is taken such
that ‖uaug

k ‖ = maxi∈{0,1,...,n−1} ‖uk+i‖, the induced norm of
any operator mapping uaug

k to uaug
k+1 will be at least 1.

However, this issue can be circumvented by utiliz-
ing a weighted norm on Un, for instance by taking
the norm to be ‖uaug

k ‖ = maxi∈{0,1,...,n−1} λ
n−i‖uk+i‖ for

some λ ∈ (0, 1).

6.2. Computation and Verification of Optimal Update
Laws

To demonstrate the utility of the optimization ap-
proach to ILC design, the performance of different Q
and L matrices computed via (13) will be compared.
For each of the computed algorithms, a set of 200 tri-
als will be conducted, and for each algorithm there ex-
ist positive integers N0 and Nf such that disturbances
and uncertainties affect the system from trial N0 to Nf .
The performance measure we would like to minimize is
given as

δ , max
k, j∈{N0,N0+1,...,Nf }

‖ek − e j‖. (18)

The scalar quantity δ is an indirect measure of fluctua-
tions from nominal performance, with lower values sig-
nifying better predictability with respect to the nominal
system. The reason for considering this measure as op-
posed to maxk∈N ‖ẽk‖ is consistency with the experimen-
tal validation, since the “nominal” system is not imple-
mentable in practice due to noise and disturbances.

The following steps are taken to enhance computa-
tional aspects of the problem:

• Norm optimally derived filters: The first case we
consider is that the update law is derived via the
norm optimal framework (17) with scalar weight-
ing matrices, so

J = we‖ek+1‖
2+wu‖uk+1‖

2+w∆u‖uk+1 − uk‖
2. (19)

The solution of the norm optimal problem is given
in the form of matrices Q, L such that

uk+1 = Quk + Lek. (20)

In other words, we impose the additional constraint
on (13) that the matrices Q, L minimize the cost
function (19) via (20).

A specific solution (Q, L) for given nonzero
weightings (we,wu,w∆u) is invariant over the open
set {µ(we,wu,w∆u) : µ ∈ (0,∞)}. As such, the
weighting we can be fixed so that the program (13)
with the additional constraint defined above opti-
mizes over the two scalars wu and w∆u.

• Lower triangular Toeplitz filters: In a similar
fashion, to reduce complexity, we will also con-
sider the case where Q and L are lower triangular
Toeplitz matrices. This reduces the number of vari-
ables to be optimized from 2n2 to 2n, significantly
decreasing the computational burden. Despite this
simplification, the program (13) is still computa-
tionally expensive for large n. For demonstration
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Table 2: Simulation comparison of optimized update laws derived
from (19) for different values of β. Here, we = 10 is the fixed weight-
ing so the optimization is over wu and w∆u. The additive plant uncer-
tainties are chosen to be lower triangular, where each nonzero entry
is drawn from U(−0.005, 0.005). Similarly, each entry of din

k , d
out
k is

drawn fromU(−0.0025, 0.0025). For each case, ‖ē∞‖ = β.

β wu w∆u γ̄ α δ

0.9500 0.0263 0 0.0975 10.803 183.05
0.9990 1.1383 0 0.0134 1.3623 129.95
0.9999 10.000 0 0.0050 0.5025 70.29

purposes, the number of samples for this simpli-
fication will be chosen as 10, and the model used
will be the discretization of the identified closed
loop model Tcl(s) sampled at 100 Hz. The con-
sidered reference signal is a 5 Hz unit amplitude
sine wave. Note that since the output and the ref-
erence are shifted via (15) and (16), the matrix L
represents a noncausal LTI filter when it is non-
singular: The input uk(i) at time i depends on the
error ek(i + 1), for all i ∈ {0, 1, . . . , n − 1}.

We also note that similar simplifications can be made,
for example, by choosing Q and L to be diagonal, or
upper triangular and/or Toeplitz. As before, the addi-
tive plant uncertainties will be chosen to be lower tri-
angular random matrices, where each nonzero entry is
drawn from U(−0.005, 0.005). Similarly, the distur-
bances are considered to be a combination of input and
output disturbances din

k , d
out
k , where each entry is drawn

fromU(−0.0025, 0.0025).

Remark 3. At first glance, optimizing an “optimal”
learning law might seem redundant, but can be ex-
plained by analogy to linear quadratic regulation (LQR).
LQR is an optimal control methodology in which a
quadratic “cost” function is minimized to find an op-
timal state feedback law. In practice, the cost func-
tion and the associated weighting matrices are not given
as the design specification for a control problem. Of-
ten, the weighting matrices are used as “tuning knobs”
to properly adjust the resulting state feedback law and
achieve given design specifications (e.g. maximum rise
time and/or settling time, minimum disturbance rejec-
tion etc.). In this sense, our approach is similar to opti-
mally selecting the LQR weights to minimize plant sen-
sitivity, subject to a lower bound on convergence rate
and an upper bound on steady state error under step re-
sponses, which can be done in a numerical fashion.

Table 2 compares update laws derived from (19)
for different values of β, which bounds the accept-

able steady state error level. For all cases, the nom-
inal asymptotic error turns out to have magnitude β;
i.e. ‖ē∞‖ = β. It can be seen that decreasing values of α
signify a decreasing level of performance uncertainty,
i.e. decreasing δ. Moreover, there seems to be a trade-
off between β and δ, so predictable performance comes
at the expense of nominal performance.

The norm optimal framework (19) gives limited
design freedom since only two scalar variables are
optimized. The usefulness of the optimization ap-
proach (13) can be seen better in Figure 6, where 10×10
lower triangular Toeplitz matrices Q and L are opti-
mized, as noted before. To further verify the trade-off

between α and δ, different lower bounds on α are set
as optimization constraints, while β is kept constant.
The update law with α = 0.6882 yields more predictable
performance compared to when α = 3.3345, which can
also roughly be seen from the fact that the latter achieves
a higher maximal and and a lower minimal error, while
the nominal asymptotic performance is the same.
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Figure 6: Performance of optimized lower triangular Toeplitz con-
trollers with: For α = 3.3345 we have δ = 8.3930, and for α = 0.6882
we have δ = 3.1896. The additive plant uncertainties are cho-
sen to be lower triangular, where each nonzero entry is drawn
from U(−0.05, 0.05). Similarly, each entry of din

k , d
out
k is drawn

fromU(−0.25, 0.25).

Remark 4. In Table 2, the optimal weighting w∆u = 0
in all cases, for which an intuitive explanation can be
given as follows: For iteration invariant systems and dis-
turbances, the weight w∆u does not affect the converged
error (the scalar β in (13)), and a larger w∆u leads to a
slower convergence. Thus, for the objective of minimiz-
ing (13), a nonzero w∆u leads to a suboptimal solution
since fast convergence is desired to minimize α. How-
ever, this might not necessarily be the case for different
formulations of the nonlinear program (13), larger val-
ues of the uncertainty bound ρ, or nonscalar norm opti-
mal ILC weightings.
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7. Experimental Results

In this section, experimental implementation results
for the update laws derived in Section 6 will be pre-
sented. The objectives of the section are similar to that
of Section 6. That is, we would like to verify experi-
mentally the input-output stability of a couple of ILC
algorithms under iteration varying uncertainties. Sec-
ond, we would like to roughly verify the optimization
approach (via the nonlinear program (13)) to norm opti-
mal ILC synthesis by comparing the experimental per-
formance of the update laws whose simulation results
are shown in Table 2. As an additional point, we will
discuss the idea of precompensation in the iteration do-
main and test this idea on our experimental setup. In
this section, experimental implementation results for
the update laws derived in Section 6 will be presented.
The objectives of the section are similar to that of Sec-
tion 6. That is, we would like to verify experimentally
the input-output stability of a couple of ILC algorithms
under iteration varying uncertainties. Second, we would
like to roughly verify the optimization approach (via the
nonlinear program (13)) to norm optimal ILC synthesis
by comparing the experimental performance of the up-
date laws whose simulation results are shown in Table 2.
As an additional point, we will discuss the idea of pre-
compensation in the iteration domain and test this idea
on our experimental setup.

7.1. Robust Stability of First and Higher Order ILC

We will compare the H∞ ILC algorithm for certain
systems described in Ahn et al. (2007a) with a sim-
ple manually tuned norm optimal controller; the par-
ticular H∞ algorithm is chosen since it requires sig-
nificantly less time to be synthesized and has similar
performance compared to its uncertain counterpart (see
Figure 5). For robustness against high frequency noise
amplification, the computed input uk+1 of the H∞ con-
troller is further filtered through a first order low pass fil-
ter with a cutoff frequency of 400 Hz. The norm optimal
controller has the scalar weightings we = 10, wu = 0,
and w∆u = 5. At the samples where the velocity of the
reference signal is equal to 0, a first order low pass filter
with cutoff frequency of 150 Hz is applied to ensure ro-
bustness against high frequency noise amplification and
avoid numerical instability. The results can be seen in
Figure 7, where both systems maintain stability and por-
tray comparable performance under unknown bounded
perturbations from trials 25 to 45, where the predefined
sequence S of weights is placed on the Y stage.
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Figure 7: Comparison of H∞ and norm optimal ILC algorithms un-
der bounded unknown perturbations from trials 25 to 45, where the
predefined sequence S of weights is placed on the Y stage from tri-
als 25 to 45. Both systems maintain stability and portray comparable
performance under unknown bounded perturbations.

Table 3: Experimental comparison of optimized update laws derived
from (19) for different values of β. Here, we = 10 is the fixed weight-
ing so the optimization is over wu and w∆u. For each case, ‖ē∞‖ = β.
Decreasing values of α signify decreasing values of δ, as expected.

β wu w∆u γ̄ α δ

0.9500 0.0263 1 0.0975 57.9360 1.2274
0.9990 1.1383 1 0.4193 1.7637 1.1830
0.9999 10.000 1 0.0909 0.9689 0.5244

7.2. Optimized Update Laws
The norm optimal controllers derived from (13),

whose simulation results are shown in Table 2, are
tested on the experimental setup to verify the hypothe-
sis that δ can be minimized via the program (13). How-
ever, to avoid high frequency noise amplification, we
set w∆u = 1. The predefined sequence S of weights is
placed on the Y stage as before from trials 25 to 45. We
note that we use the scalar quantity δ defined in (18),
since the “nominal” system is not implementable in
practice due to noise and disturbances. As can be seen
in Table 3, decreasing values of α signify decreasing
values of δ, which is expected. Note that δ values are
much lower compared to their simulated values, which
is due to the fact that the experimental perturbations are
limited to several different weights as opposed to the
random perturbations of the simulation scenarios.

7.3. Precompensation in the Iteration Domain
Perfect tracking is an infeasible objective when the

system to be controlled is subject to unknown iteration
varying disturbances and/or, when the additive uncer-
tainty is high in magnitude. As such, depending on the
magnitude of uncertainties, minimizing the measure α
can be taken as an objective of primary importance over
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Figure 8: Precompensation in the iteration domain: The feedback con-
trol in the iteration domain interpretation of ILC makes it clear that
aggressive learning might amplify measurement noise dmes

k . When
the controller does not have an integrator, i.e. Q , I, the precompen-
sator K can be used to partially recover the tracking performance.

the steady state performance. This approach has not
been explored much in the ILC literature. To be pre-
cise, while plenty of publications have studied how to
reduce the absolute error, not much work has been done
to quantify the relative error ẽk in the presence of itera-
tion varying effects. For certain applications (e.g. man-
ufacturing), precision is arguably more important than
accuracy, and repeatable errors are preferred. When this
is the case and perfect tracking is infeasible or undesir-
able due to large uncertainties, and/or iteration varying
effects, we propose precompensation in the iteration do-
main (see Figures 8) as an ad hoc fix to recover tracking
performance. Pole placement methods typically change
DC gains of systems, which are commonly recovered
through precompensation, and this idea can be easily
extended to ILC systems. One simple choice for the pre-
compensator K is given by inverting the nominal steady
state reference to output matrix given in (14),

K = (P̄(I − (Q − LP̄))−1L)−1, (21)

which is verified experimentally: Figure 9 shows that
precompensation results in approximately an order of
magnitude improvement in tracking, i.e. an order of
magnitude decrease in the norm of the error r − yk.
Moreover, the precompensated system maintains sta-
bility in the presence of perturbations, as can be seen
in Figure 10. However, we emphasize that by virtue
of its open loop (in the iteration domain) nature, the
performance of a precompensated ILC scheme depends
largely on the accuracy of the modeling information; in
our case, the accuracy of (21).

8. Conclusion

In this paper, we scrutinized the stability and con-
vergence properties of ILC systems subject to trial to
trial uncertainty. We formulated the system to be con-
trolled as a linear input-output map in an abstract Ba-
nach space setting to ensure the generality of our anal-
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Figure 9: Experimental verification of precompensated norm optimal
ILC, with weights we = 10, wu = 0.0025, and w∆u = 1. Precompen-
sation leads to an order of magnitude decrease in the norm of the er-
ror r − yk as the iteration index k → ∞.
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Figure 10: Experimental verification of precompensated norm
optimal ILC subject to mass perturbation sequence S with
weights we = 10, wu = 0.0025, and w∆u = 1. Precompensation leads
to more than an order of magnitude decrease in the norm of the the
error r − yk as the iteration index k → ∞, and does not affect robust
stability.

ysis, assuming bounded uncertainties in all process pa-
rameters; including the input-output operator, reference,
disturbances and initial conditions. We showed that
when a linear update law is designed to be robust over
the uncertainty set P, linear discrete time methods can
be employed directly to show the system exhibits desir-
able properties such as asymptotic stability and bound-
edness. Moreover, we investigated how the design of the
operators Q and L affects the convergence properties of
iteration varying systems. We showed that an iteration
varying system converges to 1) a bounded neighborhood
of a nominal system if the uncertainties are bounded,
and, 2) the nominal system itself if the uncertainties are
convergent. Further we argued for employing an opti-
mization based approach to ILC design to improve pre-
dictability in iteration varying systems. Our analysis
was supported by simulation results, along with experi-
mental verification on a linear motion control stage.
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It turns out that robust ILC methods, which are well
studied in the literature, can be applied directly to iter-
ation varying systems. The results are strong in terms
of their generality and the lack of limiting assumptions
apart from linearity. A further direction to pursue is the
study of optimal ILC strategies with structured (time in-
variant, higher order etc.) perturbations under discrete
or continuous frameworks, with or without feedback.
A disturbance rejection problem has been considered
in Moore and Verwoerd (2008) via l1 norm minimiza-
tion, and anH∞ minimization problem for HOIM based
plants, references, disturbances has recently been con-
sidered in Zhu et al. (2015). We expect the initial results
of our paper, along with some of the work in Moore and
Verwoerd (2008); Zhu et al. (2015) to pave the way for
future research in iteration varying systems in ILC.
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Appendix A. On the Banach Space Framework

As stated in Section 2, the motivation behind the ab-
stract Banach space framework is to preserve some gen-
erality: The operator P̄ represents the input-output re-
lationship of a linear system, which can be described
by an ordinary differential equation, a partial differen-
tial equation, or a difference equation, over a finite or
infinite domain. This operator can be causal/noncausal
and invariant/varying with respect to the underlying in-
dependent variables (e.g. time and/or space). In addi-
tion, the input-output spaces can be multidimensional.
For example, the operator P̄ can be a stable causal n× n
transfer matrix, in which case the input-output spaces
can be defined as square integrable signals in the fre-
quency domain (i.e. U = Y = Hn

2 ) with the correspond-
ing induced norm as theH∞ norm. Hence, by taking U
and Y as complete normed spaces, and P̄ : U → Y as a
bounded linear operator, we will be able to have a com-
plete analysis valid for a broad class of problems, in a
simplified fashion.

Care must be taken in the definitions of the opera-
tors, as boundedness depends on the specific choice of
spaces. Two examples are given below.

Example 1. Consider the scalar differential equa-
tion ẏ(t) = cy(t)+u(t) with the initial condition y(0) = 0,
where c ∈ R, and U = Y is the space of continuous
functions over the interval [a, b] with the sup norm. The
differential equation is a bounded operator for

• a = 0, b = ∞, if and only if c < 0,

• a = −∞, b = 0, if and only if c > 0, and

• a, b ∈ R, for all c.

Example 2. Consider the convolution operator repre-
sented by the transfer function 1/(1−s). This operator is
unbounded (unstable) if the transfer function is the one
sided Laplace transform (over the positive real line) of
the kernel et, but is bounded (stable) if it is the bilateral
Laplace transform of the kernel et1(−t), where 1(.) is the
Heaviside step function. Here, the input-output spaces
are Lp for any p ∈ [1,∞].
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