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Abstract

The diversity of precision motion control applications and their demanding design specifications pose a large array
of control challenges. Hence, precision motion control design relies on a variety of advanced control strategies
developed to cope with specific problems present in control theory. A popular feedforward control technique for
repetitive systems is iterative learning control (ILC). While ILC can decrease tracking errors up to several orders
of magnitude, the achievable performance is limited by dynamic uncertainty. We propose the combination of L1
adaptive control (L1 AC) and linear ILC for precision motion control under parametric uncertainties. We rely on the
adaptive loop to compensate for parametric uncertainties, and ensure that the plant uncertainty is sufficiently small
so that an aggressive learning controller can be designed on the nominal system. We exploit the closed loop stability
condition of L1 AC to design simple, robust ILC update laws that reduce tracking errors to measurement noise for
time varying references and uncertainties. We demonstrate in simulation that the combined control scheme maintains
a highly predictable, monotonic system behavior; and achieves near perfect tracking within a few trials regardless of
the uncertainty present.

Keywords: adaptive control, iterative learning control, robust control, parametric uncertainty, monotonic
convergence

1. Introduction

Iterative learning control (ILC) is a feedforward con-
trol strategy for systems that execute the same task re-
peatedly over a finite time horizon [1]. ILC is based on
the idea that the tracking performance of such systems
can be improved by using information from previous tri-
als. Contrary to other learning type control strategies
(e.g. adaptive control, neural networks, repetitive con-
trol), ILC modifies the input signal rather than the con-
troller [2]. In a way, ILC is a form of feedback control
over the iteration domain. Consistent with this property,
iterative learning controllers offer simplicity, robustness
and fast convergence to iteration domain equilibria with
performance improvements up to several orders of mag-
nitude over conventional control strategies.

One of the essential challenges that motivates the
field of ILC is dynamic uncertainty. Much as in feed-
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back control, the main approaches for mitigating un-
certainy can be roughly classified as robust or adap-
tive methods. Considerable research has been done on
the synthesis of ILC algorithms that are robust to ex-
ogenous disturbances, stochastic effects, interval uncer-
tainties, and high frequency modeling uncertainties (see
[1, 3] and references therein). References [4–6] pro-
vide good examples of H∞ methods for finite and in-
finite horizon cases; an area in which much work has
been done. In [7], the combination ofH∞ feedback con-
trol with ILC was analyzed, with the premise of band-
width separated repetitive and nonrepetitive exogenous
signals. One particular example that underlines para-
metric uncertainties from a robustness perspective is [8],
in which stability of ILC to interval uncertainties in the
impulse response is evaluated. The drawback to these
methods is that while ILC convergence is guaranteed
within the prescribed set of uncertainties, performance
is often limited due to conservative designs. Addition-
ally, the sensitivity of robust learning controllers to vari-
ations in the uncertainties is still an open question.

Parametric uncertainties have similarly been studied
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extensively in the adaptive ILC setting with special at-
tention to the application area of robotics, wherein itera-
tive estimation schemes were used to augment the feed-
back controllers using Lyapunov like methods [9, 10].
Iterative estimation was also used to reduce the model
tracking error and improve transient response in model
reference adaptive control (MRAC) [11–13]. Other
works showed how adaptive feedback control methods
can be extended to ILC in a straightforward way[14],
and proved universal adaptive ILC laws for single-input
single-output (SISO) linear time invariant (LTI) systems
with nonzero first Markov parameters [15]. While the
adaptive nature of these systems signify high perfor-
mance and reduced sensitivity to parametric variations,
the robustness of adaptive ILC to unmodeled dynamics
may be questionable, analogous to adaptive feedback
control [16, 17].

Most of the fundamental limitations and trade-offs
of control theory can be observed to a greater extent
in precision motion control due to complex, demand-
ing design specifications. Key issues in the control of
precision positioning systems include robustness to pa-
rameter variations, unmodeled high frequency dynam-
ics, and the bandwidth-precision trade-off [18]. More
complex process modeling can mitigate uncertainty is-
sues to an extent, but this becomes unfeasible as com-
plexity increases, specifically due to the fact that certain
information about the process, such as external loads
and/or parameters that are sensitive to exogenous ef-
fects, cannot be known a priori. Although adaptive feed-
back methods provide a good solution to the problem
of robustness to parametric variation and increase pre-
cision, this often comes at the expense of reduced ro-
bustness to unmodeled dynamics [17] as fast estimation,
which is desired from a performance standpoint, leads
to high gain feedback. This problem essentially boils
down to the fact that conventional adaptive control ig-
nores Bode’s sensitivity integral [19, 20], also known as
the waterbed effect, by compensating for uncertainties
throughout the whole frequency spectrum. Similarly,
while ILC extends the available bandwidth [20] of the
control channel for repetitive systems, thereby alleviat-
ing the bandwidth-precision trade-off, the achievable re-
duction in errors and monotonicity on the iteration axis
depends largely on the level of uncertainty in the feed-
back stabilized plant.

To address these issues, this work combines conven-
tional ILC with L1 adaptive feedback control, and is an
extension of our previous work in [21–23]. L1 adap-
tive control (L1 AC) is a recent MRAC paradigm that
bridges the gap between adaptive and robust control
with a priori known, quantifiable transient response and

robustness bounds [17]. The idea of combining ILC
with L1 AC was first introduced in [21], wherein the
adaptive loop was utilized to keep the plant sensitiv-
ity close to its nominal value for performance improve-
ment through learning. Despite the displayed advan-
tages of L1 AC over linear feedback, a trade-off was
observed between the closed loop bandwidth and learn-
ing performance. More precisely, it was seen that higher
closed loop bandwidths resulted in slower convergence
and larger converged errors in the iteration domain. To
resolve this problem, we proposed the augmentation of
the L1 AC architecture with an arbitrary feedforward
signal to accommodate learning, leading to an adapta-
tion that considers changes in the nominal system be-
havior due to learning [22]. The resulting L1 AC-ILC
(L1-ILC) scheme had predictable performance in both
the time and iteration domains: The feedforward aug-
mented closed loop preserved the a priori known quan-
tifiable transients from L1 AC theory, and the learn-
ing controller displayed similar convergence behavior
regardless of the uncertainty present in the system. It
was also seen that increasing feedback bandwidths re-
sulted in decreasing effects of uncertainty in the iter-
ation domain, with faster convergence and lower con-
verged errors. In [23], we presented design guide-
lines and showed the performance gains of the modi-
fied scheme over linear output feedback on a large range
nanopositioner via simulation. The main differences be-
tween this work and our previous work include:

1. A generalized approach to L1-ILC for different
classes of linear systems through vector space
methods

2. Extension of the robust monotonic learning con-
vergence results to time varying parametric uncer-
tainties

3. Design guidelines for the L1-ILC scheme that link
feedback-learning filter designs to classical control
ideas, and show how the L1 AC stability condition
can be satisfied for a given system

4. Validation of the performance improvements of the
proposed scheme in comparison with an LTI feed-
back based ILC, through extensive simulations on
a precision positioning system subject to time vary-
ing parametric uncertainties

Our work differs from the existing literature in several
ways: First, as we have mentioned, previous work on
adaptive methods in learning have focused on adaptive
ILC, wherein adaptive learning laws are considered with
or without adaptive feedback. Second, adaptive feed-
back has not been used in a robust ILC setting before.
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Third, although the idea of combining ILC with ad-
vanced feedback methods to achieve better performance
is not new, to the best of our knowledge, the combina-
tion of conventional ILC with adaptive feedback has not
been employed before.

In this paper, we demonstrate how ILC algorithms
can be combined with L1 AC schemes to achieve ro-
bust, high precision motion control. We present feed-
forward augmented L1 AC architectures for state and
output feedback cases (see figures 2 and 5) to accommo-
date parallel ILC signals and show how this preserves
the a priori known L1 AC transient bounds. We explain
how these bounds, which imply arbitrary close tracking
of linear reference models in the time domain, can be
exploited for learning purposes in the iteration domain.
We then show how the L1 AC stability condition relates
directly to the robust monotonic convergence conditions
of LTI learning laws, and how robust ILC algorithms
can be designed in a simple, straightforward manner for
different L1 AC architectures.

The rest of the paper is organized as follows. Sec-
tion 2 introduces some preliminaries for clarity of ex-
position. Section 3 gives a brief introduction to L1 AC
and ILC, and presents our proposed method for the state
feedback case. Section 4 extends the results to time
varying uncertainties in output feedback. Simulation re-
sults are given in section 5. Section 6 gives concluding
remarks and summarizes our findings. For a streamlined
presentation, we give certain intermediate results in Ap-
pendix A, proofs of our main results in Appendix B
and several auxiliary variables in Appendix C.

2. Notation and Preliminaries

Throughout the paper, we use time and frequency do-
main representations interchangeably for signals. For
example, f (s) denotes the Laplace transform of the sig-
nal f (t). We denote systems and matrices with upper
case letters. We represent signals and vectors with lower
case letters. We use script letters to distinguish linear
operators in general from their matrix and transform
representations (e.g. F instead of F(s)). We take R
to represent the set of real numbers and R+ the set of
positive real numbers. We choose C to denote com-
plex numbers. We take I to be the identity matrix of
appropriate size and I to be the identity operator in the
relevant space. We use λmax(.) and λmin(.) to denote the
maximum and minimum eigenvalues of a positive defi-
nite matrix, respectively. We take ‖.‖p for p ∈ [1,∞] as
the standard vector and induced p norm. We use F −R

and F −L for the right and left inverses of an operator F ,
respectively; and FT for the transpose of a matrix F.

In the rest of the section, we collect several defini-
tions and facts from systems theory pertinent to our dis-
cussion.

Definition 1. For any p ∈ [1,∞), Ln
p is defined as the

space of all piecewise continuous f : R → Rn such
that ‖ f ‖Lp , (

∫ ∞
−∞
‖ f (t)‖pdt)1/p < ∞, where ‖.‖ is any

standard vector norm in Rn. However, it is conventional
to use the 2 norm forLn

2. Similarly, Ln
∞ is defined as the

space of all piecewise continuous f : R→ Rn such that
‖ f ‖L∞ , supt∈R ‖ f (t)‖∞ < ∞.

Definition 2. For any p ∈ [1,∞], the extended space
Ln

pe is defined as the space of all piecewise continuous
causal f : R → Rn such that ‖ fτ‖Lp < ∞ ∀τ ≥ 0,
where fτ is the truncation of f defined by fτ(t) , f (t)
for 0 ≤ t ≤ τ and fτ(t) , 0 for t > τ.

Definition 3. For a given m input n output LTI system
F(s) with impulse response f (t) ∈ Rn×m, the L1 norm is
defined as ‖F(s)‖L1 , maxk∈1,2,...,n

∑m
l=1 ‖ fkl‖L1 , where

fkl(t) is the entry at the kth row and lth column of f (t).

Definition 4. The L∞( jR) norm of a bounded-input
bounded-output (BIBO) stable LTI system F(s) is de-
fined by ‖F(s)‖∞ , supω∈R ‖F( jω)‖2.1

Lemma 1. Let F(s) be a stable causal LTI system. Then
for every bounded input ζ, the output ξ is bounded and
we have ‖ξτ‖L∞ ≤ ‖F(s)‖L1‖ζτ‖L∞ [17, page 273].

Remark 1. Lemma 1 shows that the L1 norm of a sta-
ble LTI system is essentially its induced L∞ norm: If
‖F(s)‖L1 =

∑m
l=1 ‖ fkl‖L1 for some k, the equality can be

achieved by taking ul(t − υ) = sgn( fkl(υ)). This also
implies ‖F1(s)F2(s)‖L1 ≤ ‖F1(s)‖L1‖F2(s)‖L1 for sta-
ble F1(s), F2(s). Consequently, an LTI system F(s) is
BIBO stable if and only if ‖F(s)‖L1 < ∞ [17, page 274],
which justifies the use of the L1 norm in establishing
boundedness in L1 AC algorithms.

Theorem 1. For a BIBO stable LTI system F(s) the in-
duced L2 norm is equal to ‖F(s)‖∞ [24, page 101].

Readers will note that we mainly consider two types
of signal norms: L∞ andL2. TheL∞ norm will be used
in L1 AC to establish boundedness (lemma 1), while
the L2 norm will be of interest in ILC as a performance
metric. The following will be used in establishing the
relationship between the two for ILC design:

1The L∞( jR) norm of a transfer function should not be confused
with the L∞ norm of a signal in the time domain. For causal F(s),
‖F(s)‖∞ is precisely theH∞ norm.
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Figure 1: L1 adaptive control for LTI state feedback
with unknown pole locations

Lemma 2. For a stable causal m input n output LTI
system F(s) we have ‖F(s)‖∞ ≤

√
n‖F(s)‖L1 .

Remark 2. While lemmas 1 and 2 are given for causal
systems, the results are also true in essence for non-
causal systems. For example, for a stable noncausal
LTI system F(s) with bounded input ζ, the output ξ is
bounded and ‖ξ‖L∞ ≤ ‖F(s)‖L1‖ζ‖L∞ . In the rest of the
paper, unless otherwise noted, we will assume all sys-
tems and signals to be causal.

3. State Feedback

We will start our discussion with the full state feed-
back L1 AC architecture (figure 1) for SISO LTI sys-
tems with unknown pole locations. This class of sys-
tems offers a good introduction to L1 AC and will show
us that the guaranteed transient property holds with the
addition of a feedforward signal in the problem objec-
tive. We will then demonstrate how this property, along
with the main stability condition of L1 AC, can aid us
in the design of our learning law. Finally, we will have a
brief look at the design trade-offs and argue how L1 AC
and ILC can be combined into a single framework with
the unified objectives of high tracking performance, ro-
bustness to uncertainties and monotonic transient re-
sponse in the time and iteration domains.

3.1. L1 Adaptive Control
L1 AC is a recently developed model following con-

trol methodology [17] with guaranteed transient perfor-
mance and robustness in the presence of fast adapta-
tion. The central idea of L1 AC theory lies in the use
of the available bandwidth of the control channel, im-
posed by physical hardware [20]. Drawing inspiration
from robust and classical control, L1 AC aims to com-
pensate for uncertainties in a limited range of frequen-
cies, a more “feasible” objective than that of conven-
tional MRAC wherein uncertainties are compensated
over the whole spectrum. This approach brings sig-
nificant advantages over conventional MRAC, the most

critical of these being the “decoupling” of estimation
and control, realized by the presence of a bandlimited
filtering structure at a particular point (which varies de-
pending on the class of systems, see for instance figure
1 for the LTI state feedback with unknown pole loca-
tions) in the architecture. As a result of this property,
the performance-robustness trade-off of L1 systems is
defined by the bandwidth of the filter as opposed to
the rate of adaptation. This trade-off can be addressed
with tools from classical and robust control; whereas the
adaptation rates can be increased arbitrarily and are lim-
ited only by practical concerns such as hardware speed
and noise. Consequently, uniform performance bounds
on the input and output signals can be enforced by high
adaptation rates while still maintaining a relatively high
level of robustness [25].
L1 AC algorithms have been developed for a wide

range of classes. In this section, we present the L1 ar-
chitecture for SISO LTI systems with unknown constant
parameters. To account for changes in system trajectory
due to feedforward control, and put the problem into a
meaningful format, we augment the original controller
[17] with a bounded feedforward signal.

3.1.1. Problem Formulation
We consider the following class of systems

ẋ(t) = Ax(t) + b(u(t) + θT x(t)), x(0) = xin,
y(t) = cT x(t), (1)

where x(t) ∈ Rn is the measured state vector; u(t) ∈ R is
the control input; b, c ∈ Rn are known constant vectors;
A ∈ Rn×n is a known constant matrix, with (A, b) con-
trollable; θ ∈ Θ is an unknown constant vector, where
Θ is a compact convex set; and y(t) ∈ R is the output
signal. Without loss of generality, let A be Hurwitz.

Assumption 1. Θ =
{
θ ∈ Rn : ‖θ‖∞ ≤ θM∞

}
for some

θM∞ ∈ R+.

Remark 3. Assumption 1 will enable us to abuse the
relationship of lemma 2 for ILC purposes.

TheL1 AC objective is to track a given reference system
in transient and steady state phases.

3.1.2. Closed Loop Reference System
The reference system dynamics are described by

(A, b, cT , 0), the strictly proper BIBO stable transfer
function C(s) with DC gain 1 and zero state space ini-
tialization, and the unknown parameter θ. C(s) is also
subject to the L1 norm condition

‖G(s)‖L1θM1 < 1, (2)
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where G(s) , Hx(s)(1 − C(s)), Hx(s) , (sI − A)−1b;
and θM1 , maxθ∈Θ ‖θ‖1 = nθM∞ . Let H(s) , cT Hx(s).
The feedforward augmented closed loop reference sys-
tem can be defined as

ẋre f (t) = Axre f (t) + b(ure f (t) + θT xre f (t)),
yre f (t) = cT xre f (t),
ure f (s) = C(s)(kgr(s) − θT xre f (s)) + ui(s),

(3)

with initial condition xre f (0) = xin, where kg = 1/H(0)
is a static precompensator; r(s) is the reference signal;
and ui(s) is a bounded input signal in Laplace notation.

By augmenting the reference system with a feedfor-
ward control signal, we reformulate the problem so that
the objective is to track certain given dynamics driven
by a reference signal and a feedforward signal. Since
this signal will be synthesized by certain filtering meth-
ods, and be used later for performance improvement,
we choose not to pass it through C(s). Note that letting
C(s) = 1 in (3) results in the nominal system given by
(A, b, cT , 0) (i.e. θ = 0) with input kgr(t) + ui(t). In that
sense, we aim to only partially compensate for uncer-
tainties, within the bandwidth of C(s).

Lemma 3. If (2) is satisfied, the reference system (3) is
bounded-input bounded-state (BIBS) stable.

Proof. See [17]. The proof follows in the same manner
from the boundedness of ui(t).

Remark 4. Condition (2) ensures that the feedback
gain of θ on the system states is small enough for sta-
bility (see lemma 7 in Appendix A) since ‖θ‖1 is the
L1 norm of the static LTI system θT . In other words,
we require the bandwidth of C(s) be high enough for
sufficient compensation of uncertainties.

3.1.3. L1 Adaptive Controller
The L1 adaptive controller is based on a fast esti-

mation scheme which consists of a state predictor, the
bounded feedforward input ui(t) and the bandlimited fil-
ter C(s).

3.1.3.1. State Predictor. The controller relies on the
following state predictor

˙̂x(t) = Ax̂(t) + b(θ̂T (t)x(t) + u(t)) − Ksp x̃(t), (4)

with initial condition x̂(0) = xin, where x̂(t) is the state
prediction vector; θ̂(t) is the estimate of the unknown
constant vector θ; x̃(t) , x̂(t) − x(t) is the prediction
error; and Ksp ∈ Rn×n can be used to assign faster poles
to (A − Ksp) [26].

cT

kg

ILC

Control Law

State Predictor

Adaptation Law

System

r

u = uad + ui

ui

e
−

x̂

x

y

θ̂

L1 Adaptive Controller

Figure 2: ILC with feedforward augmented L1 adaptive
feedback

3.1.3.2. Adaptation Law. The adaptation law that esti-
mates θ is

˙̂θ(t) = Γ Proj(θ̂(t),−x̃T (t)Pbx(t)), (5)

with arbitrary initial condition θ̂(0) = θ̂in ∈ Θ, where
Proj(., .) is the projection operator defined in [27], with
projection bound θM2 , maxθ∈Θ ‖θ‖2 =

√
nθM∞ ; Γ > 0

is the adaptation rate; and P = PT > 0 is the solution to
the algebraic Lyapunov equation AT P + PA = −Z, with
arbitrary Z = ZT > 0. The projection operator ensures
the boundedness of θ̂(t) by definition. This property is
used extensively in the analysis of L1 schemes.

3.1.3.3. Control Law. The control input is defined as

u(t) = uad(t) + ui(t),
uad(s) , C(s)(kgr(s) − η̂(s)),

(6)

where uad(t) and ui(t) are the feedback and feedforward
signals, respectively; and η̂(s) is the Laplace transform
of θ̂T (t)x(t). Inclusion of the feedforward signal in the
control input leads to the augmentation of the state pre-
dictor (see figure 2). Hence, the controller generates the
proper adaptive signal uad(t) to track (3).

3.1.4. Transient Performance
The controller ensures transient and steady-state be-

havior in the input and output channels with respect to
the L1 reference system, as stated in the theorem below.

Theorem 2. For system (1) with the controller defined
according to (4), (5) and (6), subject to the L1 norm
condition (2); and its corresponding reference system
(3), we have

‖xre f − x‖L∞ ≤
χ1√

Γ
, lim

t→∞
(xre f (t) − x(t)) = 0,

‖ure f − u‖L∞ ≤
χ2√

Γ
, lim

t→∞
(ure f (t) − u(t)) = 0, (7)

where χ1, χ2 ∈ R are defined in [17].
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Figure 3: Parallel ILC Scheme with the forward trial
shift operator q and update law ui+1 = qui = f (ui, ei)

Proof. See [17]. The proof is the same since xre f (t) −
x(t) and ure f (t) − u(t) do not change with the choice of
ui(t).

Theorem 2 implies that while itself being nonlinear, the
L1 adaptive controller can track the linear reference
model arbitrarily closely as Γ is increased. Since ILC
uses information from the input and output channels,
this property enables the use of the reference model in
designing the ILC update law. Moreover, the reference
system can be made arbitrarily close to the design sys-
tem, at the expense of reduced robustness, by increasing
the bandwidth of C(s). For further details, we refer the
readers to [17].

3.2. Iterative Learning Control

ILC architectures can be broadly classified as parallel
or series in terms of their relation to feedback control
loops. The parallel architecture, which we use in our
controller (compare the L1 AC formulation in section
3.1.2 with figure 3), divides the input signal into feed-
back and feedforward components. In this approach, the
feedforward signal for the next iteration is synthesized
by processing the error and the feedforward input at the
current iteration.

ILC design methods are numerous and include fre-
quency domain, plant inversion, and optimization tech-
niques. While frequency domain methods only approx-
imate the system due to finite trial duration, they offer
simplicity, flexibility and tunability as in classical con-
trol. For these reasons, we will be adopting frequency
domain methods to design our learning law. Further de-
tails on ILC can be found in [1].

3.2.1. Update Law
A common first order frequency domain ILC algo-

rithm, which we will employ, is the Q filter and learning
function approach:

ui+1(s) = Q(s)(ui(s) + L(s)ei(s)). (8)

In (8), ui(s) is the ILC input; Q(s) is the Q filter; L(s)
is the learning function; ei(s) is the reference tracking
error; and i is the iteration index. In this approach,
L(s) is used to maximize learning, while Q(s) limits the
bandwidth for robustness and other practical purposes
at the expense of performance. Asymptotic stability and
monotonic convergence of the algorithm is given by the
following well known theorem:

Theorem 3. The ILC system, defined by the update law
(8) acting on a stable SISO LTI system F(s), is mono-
tonically convergent if ‖Q(s)(I − L(s)F(s))‖∞ ≤ µF < 1
for some µF . That is, ‖u∞ − ui+1‖L2 ≤ µF‖u∞ − ui‖L2 ,
i = 0, 1, . . . , where u∞(t) is the converged input.

Remark 5. As causality is not a constraint in ILC, the
readers might ask if the condition is valid for noncausal
Q(s) and L(s). The answer is yes, since the theorem is
proven by defining a contraction in the input space L2
by aid of theorem 1. Readers interested in the use of
noncausal LTI operators in ILC can refer to [28].

3.2.2. Monotonic Convergence and Robustness
Recall the guaranteed transient property of the adap-

tive system as stated in (7). For the design of the update
law, we will assume Γ is sufficiently high, and conse-
quently that x(t) = xre f (t). Nevertheless, since the L1
controller aims to compensate for uncertainties within
the bandwidth of C(s), parametric uncertainties will still
exist. The closed loop system can be described as

yi(s) = H̄(s)ui(s) + H̄(s)C(s)kgr(s)+

cT (I −G(s)θT )−1xnr(s),

where H̄(s) , cT (I−G(s)θT )−1Hx(s) = H(s)/1−θT G(s)
by lemma 8 in Appendix A; and xnr(s) , (sI− A)−1xin.

While theorem 3 ensures monotonic convergence in
the L2 space for a nominal system, it does not guar-
antee the same under uncertainty. We now state our
main result which shows that for the L1-ILC scheme,
robust monotonic convergence can be guaranteed in a
very simple way.

Theorem 4. The ILC system with the update law (8)
defined over H̄(s) subject to (2), is monotonically con-
vergent with rate µ ∈ [0, 1) ∀θ ∈ Θ if

κ ≤
µ − |Q( jω)||1 − L( jω)H( jω)|
|Q( jω)||L( jω)||H( jω)|

, (9)

∀ω ∈ R, where

κ ,
θM2‖G(s)‖∞

1 − θM2‖G(s)‖∞
. (10)
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Remark 6. Theorem 4 is a natural result of theorem 6
of [1] when the uncompensated uncertainty is written in
multiplicative uncertainty form. See Appendix B for
the details.

Theorem 3 states that the nominal system can be ren-
dered monotonically convergent by defining a contrac-
tion mapping in the input space. Theorem 4, on the
other hand, directly extends monotonic convergence to
the L1-AC scheme by making sure that the update law
defines a contraction ∀θ ∈ Θ. More specifically, (9)
implies maxθ∈Θ ‖Q(s)(1 − L(s)H̄(s))‖∞ ≤ µ̄ < 1 for
some µ̄. This condition follows elegantly from the L1
norm condition which ensures that the plant uncertainty
(1 − θT G(s))−1 exists and is BIBO stable.

3.3. Design Trade-Offs

For a better understanding of the combined L1-ILC
scheme, we will have a look at the design trade-offs.
We first define Λ(s) , (1 − θT G(s))−1. The inequalities
below follow directly from the definitions of Λ(s) and
µ̄:

|Λ( jω)| ≥
1

|1 − θT Hx( jω)| + |C( jω)||θT Hx( jω)|
,

µ̄

|Q( jω)|
≥ |1 − |L( jω)H( jω)Λ( jω)||.

It follows that

|L( jω)||H( jω)| ≤
(

µ̄

|Q( jω)|
+ 1

)
× (|1 − θT Hx( jω)| + |C( jω)||θT Hx( jω)|). (11)

Recall that C(s) and Q(s) describe the performance-
robustness trade-offs in their respective domains. Thus,
generally speaking, we can conclude the following:

1. Increasing the bandwidth of C(s) decreases the
minimum µ̄ that satisfies (11), i.e. faster conver-
gence. Indirectly, a higher bandwidth also results
in better iteration domain robustness since µ̄ be-
comes bounded further away from 1, thereby leav-
ing the possibility of higher gain Q filters for en-
hanced performance: As the bandwidth of C(s)
increases, κ, as defined in (10), decreases since
‖G(s)‖∞ ≤ ‖Hx(s)‖∞‖1 −C(s)‖∞. As a result, the
designer can tune Q(s) to increase its bandwidth
and minimize the converged error.

2. Decreasing the bandwidth of Q(s) decreases the
minimum µ̄ that would satisfy (11), which signifies
increased iteration domain robustness. This further

implies that one can use a lower gain C(s) for a
feedback system with better stability margins: Be-
cause Q(s) has a lower gain, there exists a higher
value of κ satisfying (9) for the initial value of µ̄.

It thus makes sense to summarize the design trade-offs
for the combinedL1-ILC scheme as that of performance
versus robustness. Intuitively, this is to be expected as
increasing the passband of C(s) decreases uncertainty
Λ(s) = (1 − θT H(s)(1 − C(s)))−1, which is the de-
sired result from an ILC perspective. For further in-
sight into the controller, we refer the readers to [22]
where we provide extensive simulations showcasing de-
creasing effects of uncertainty with increasing feedback
bandwidth, and similar performance for all uncertain-
ties and bandwidths such that the closed loop system
remains stable.

3.4. Practical Considerations and Design Guidelines
The level of detail surrounding the previous sections

may leave the impression that the design of the com-
bined L1-ILC algorithm is highly complicated. In re-
ality, despite the algebraic intensity of the analysis, the
adaptive and learning controllers rely on fundamental
ideas of classical and robust control. Hence, in this
section we will explore how the controller can be de-
signed in a relatively straightforward way using these
ideas. The trade-offs given in section 3.3 will be helpful
towards that end.

The obvious starting point of this procedure is the de-
sign of the L1 adaptive feedback controller. Readers
would note that the main design decisions of L1 AC are
the bandwidth of the feedback filter C(s) and the magni-
tude of the adaptation rate Γ. At this point we would like
to direct the readers’ attention to theorem 2 and remind
that the theoretical model tracking error of the feedback
system can be set arbitrarily low. Therefore, the design
of the filter and selection of the adaptation rate are de-
coupled. As we have mentioned in section 3.3, C(s) de-
scribes the performance-robustness trade-off in the time
domain; i.e. a higher closed loop bandwidth results in
decreased robustness margins and vice versa. Thus, the
natural question that follows is if the L1 norm condition
can be satisfied. The lemma below illustrates how this
is indeed always possible:

Lemma 4. Let F(s) =
∏m

k=1(s+zk)∏n
k=1(s+pk) be strictly proper

and causal. Assume there exists ψ ∈ (π/2, π] such
that arg(pk) ∈ [ψ, 2π − ψ], k = 1, 2, . . . , n. Then, as
mink=1,2,...,n |pk | → ∞, ‖F(s)‖L1 → 0.

Let us assume the filter C(s) is chosen in the form of
1−sn/(sn +an−1sn−1 +· · ·+a0), which guarantees that the

7



L1 AC design

Select structure of C(s)
with cutoff frequency ωC

Increase ωC to satisfy ‖G(s)‖L1θM1 < 1
and performance specifications
whilst maintaining robustness

Set Γ as high as noise permits

ILC design

Design L(s) to minimize |1 − L( jω)H( jω)|
over [0, ωL] for some ωL

Design Q(s), select cutoff frequency
ωQ < ωL as high as possible for per-

formance whilst maintaining robustness

Figure 4: Design flowchart of the L1-ILC scheme

DC gain of C(s) is 1 and that the numerator of 1 − C(s)
is constant regardless of the choice of poles. Now, we
have

‖G(s)‖L1 ≤ ‖
sn−1

sn + an−1sn−1 + · · · + a0
‖L1‖sHx(s)‖L1 .

The above lemma then implies that ‖G(s)‖L1 can be ren-
dered arbitrarily small to satisfy the L1 stability con-
dition (2) by increasing the bandwidth of C(s) since
‖sHx(s)‖L1 ∈ R from the stability assumption and the
strict properness of Hx(s). Observe that an obvious
choice for C(s) is ωC/(s + ωC) and note that for a
given C(s) the L1 adaptive controller has guaranteed
(bounded away from 0) robustness margins [17]. Hence,
after C(s) is designed, the adaptation rate should be set
as high as possible, while taking into consideration that
large values of Γ might amplify noise and hinder closed
loop performance.

Once the adaptive control design is finalized, the
learning function can be designed on the nominal sys-
tem (i.e. θ = 0) via the well known Nyquist tuning
method [1]. A good rule of thumb to minimize the con-
verged error is to set |1 − L( jω)H( jω)| small within a
large bandwidth since

e∞(s) =
1 − Q(s)

1 − Q(s)(1 − L(s)H(s))
e f b(s),

for θ = 0, where e f b(s) is the feedback error without any
feedforward input. The Q filter can then be used to limit
this bandwidth so that the learning controller is robust

kg

ILC

Control Law

State Predictor

Adaptation Law

T (s) System

r

v = vad + vi u

vi

e

ŷ

y

σ̂

L1 Adaptive Controller

Figure 5: ILC with feedforward augmented L1 adaptive
output feedback

against unmodeled high frequency dynamics, noise, and
the uncompensated parametric uncertainty Λ(s) as per
theorem 4.

In light of these observations, the design procedure
has been summarized in figure 4. We remind the read-
ers that while higher values of ωC and ωQ signify high
closed loop and learning performance, this comes at the
expense of reduced stability margins.

4. Output Feedback

The results of section 3 show us that by a slight mod-
ification of the L1 AC formulation, we can preserve the
guaranteed transient property of the feedback controller.
By doing so, we make sure that the L1 controller uses
information from the feedforward input and keeps the
plant sensitivity close to the nominal case for perfor-
mance improvement through learning. In this section
we extend the results of section 3 to the output feed-
back case with time varying unknown feedback gains
and input disturbances. While the structure of the L1
controller is slightly different and less intuitive, we see
that the results are similar from an ILC standpoint. We
follow the same procedure of defining the feedforward
augmented adaptive controller, and designing an itera-
tive update law under the assumption of high adaptation
gain. Unless, explicitly stated, our assumptions and def-
initions from section 3 will continue to hold.

4.1. L1 Adaptive Control

We present the L1 adaptive output feedback control
architecture (figure 5) for SISO linear systems with un-
known time varying parameters and disturbances. Our
main assumption is that the nominal system is minimum
phase and of relative degree 1. TheL1 controller for this
class of systems considers an equivalent, virtual system
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with a virtual adaptive control input [29]. This virtual
control signal is passed through a BIBO stable filter to
synthesize the actual control input. Hence, we augment
this virtual adaptive system with a virtual feedforward
signal for learning purposes.

For completeness, we list some variables that are used
in the analysis of the original controller [29] in Ap-
pendix C. We include some minor changes to account
for the addition of an additional input in the adaptive
controller.

4.1.1. Problem Formulation
Consider the class of systems

ẋ(t) = Ax(t) + b(u(t) + θT (t)x(t) + σ(t)),
y(t) = cT x(t), (12)

with initial condition x(0) = xin, where x(t) is the un-
measured state vector; and σ(t) ∈ R, |σ(t)| ≤ ∆ for
some ∆ ∈ R+, is the time varying bounded disturbance.

Assumption 2. H(s) is minimum phase with relative
degree 1.

Assumption 3. θ(t) and σ(t) are continuously differen-
tiable with uniformly bounded derivatives; i.e. there ex-
ist dθ, dσ ∈ R+ such that ‖θ̇(t)‖2 ≤ dθ and |σ̇(t)| ≤ dσ.

TheL1 AC objective is to track a given reference system
in transient and steady state phases by using only output
feedback.

4.1.2. System Transformation
In this section, we restate definitions and a lemma

from [29] which will define our virtual system. Let

Hn(s) , b1sn−1 + b2sn−2 + · · · + bn,

Hd(s) , sn + a1sn−1 + · · · + an,

where ak, bk ∈ R for k = 1, 2, . . . , n so that we have
H(s) = Hn(s)/Hd(s). Further let AT ∈ Rn×n such that
the following equality holds:

Hx(s) =
AT

[
1 s . . . sn−1

]T

Hd(s)
.

Note that H(s) is stable, minimum phase, and with rel-
ative degree 1 by assumption. Hence Hn(s) and Hd(s)
are stable polynomials of order n and n−1, respectively
(b1 , 0). Define

Am ,



0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
−an −an−1 −an−2 . . . −a1


,

bm ,
[
0 . . . 0 1

]T
.

Since Am is Hurwitz, for any Zm = ZT
m > 0 there exists

Pm = PT
m > 0 that solves AT

mPm + PmAm = −Zm. Let
cm , Pmbm. By the Kalman-Yakubovich-Popov lemma
[30], Hm(s) , cT

m(sI−Am)−1bm = Hp(s)/Hd(s) is strictly
positive real (SPR). For a given signal v(s), let

u(s) = T (s)v(s), (13)

where T (s) , Hp(s)/Hn(s) with zero state space initial-
ization. Further let wx(s) be the output of the following
systemW:

wx(s) = T−1(s)w1(s),
w1(t) = θT (t)w2(t),
w2(s) = T (s)AT x(s).

(14)

Lemma 5. Given v(t), θ(t), and σ(t), there exists a sig-
nal σm(t), |σm(t)| ≤ ∆m and |σ̇m(t)| ≤ dσm for some
∆m, dσm ∈ R+, such that the output y(t) of (12) with in-
put u(t) synthesized according to (13) is equal to the
output ym(t) of the following system:

ẋm(t) = Amx(t) + bm(v(t) + wxm (t) + σm(t)),
ym(t) = cT

mxm(t), xm(0) = x̂in,
(15)

where wxm (t) is the output of (14) with the input x(t) re-
placed by xm(t) and x̂in is any point such that we have
cT

m x̂in = cT
mxin [29].

Since the above lemma states equivalence of the out-
puts for arbitrary v(t), we can proceed with (15) as the
actual system with proper modification of v(t).

4.1.3. Closed Loop Reference System
With proper modification of vre f (t), the augmented

closed loop reference system can be defined as

ẋre f (t) = Amxre f (t) + bm(vre f (t) + wxre f (t) + σm(t)),
vre f (s) = C(s)r̄re f (s) + vi(s),
yre f (t) = cT

mxre f (t),
(16)

with initial condition xre f (0) = x̂in, where wxre f (t) is
the output ofW with the input x(t) replaced by xre f (t);
r̄re f (t) , kgr(t) − wxre f (t) − σm(t) with kg , 1/Hm(0);
vi(t) is an arbitrary bounded signal; and C(s) is subject
to the L1 norm condition

‖Gm(s)‖L1 M < 1, (17)

with Gm(s) , Hxm(s)(1−C(s)), Hxm(s) , (sI−Am)−1bm;
and M , ‖T−1(s)‖L1θM1‖T (s)AT ‖L1 .

Lemma 6. If (17) is satisfied, the reference system (16)
is BIBS stable.
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Proof. See [29]. The proof follows in the same manner
from the boundedness of vi(t).

Corollary 1. For θ(t) = θ, the reference system (16) is
BIBS stable if

‖Gm(s)‖L1θM1‖AT ‖L1 < 1. (18)

Proof. The proof is omitted and is similar to the proof
of lemma 3.

4.1.4. L1 Adaptive Controller
The L1 adaptive controller for the virtual system is

similar to that of the state feedback case, with the ex-
ception that we have a single adaptive law that estimates
the combined effects of wxm (t) and σm(t).

4.1.4.1. State Predictor. The controller has the follow-
ing state predictor

˙̂x(t) = Am x̂(t) + bm(v(t) + σ̂(t)),
ŷ(t) = cT

m x̂(t), (19)

with initial condition x̂(0) = x̂in, where ŷ(t) is the output
prediction signal; and σ̂(t) is the output of the adapta-
tion law below.

4.1.4.2. Adaptation Law. The adaptation law is given
as

˙̂σ(t) = Γc Proj(σ̂(t),−ỹ(t)), σ̂(0) = 0, (20)

where ỹ(t) , ŷ(t) − ym(t) = ŷ(t) − y(t) is the output pre-
diction error; the projection is defined with the bound
∆̄ given in Appendix C; and Γc is the adaptation rate
subject to

Γc > max
{

αβ3

(α − 1)2β4λmin(Pm)
,

αβ4

λmin(Pm)γ̄2

}
,

with α > 1 arbitrary and β3, β4, γ̄ defined in Appendix
C.

4.1.4.3. Control Law. The control law is given by

v(t) = vad(t) + vi(t),
vad(t) , C(s)(kgr(s) − σ̂(s)),

(21)

where vad(t) and vi(t) are the feedback and feedforward
signals, respectively.

4.1.5. Transient Performance
The guaranteed transient property of the controller is

given by the following theorem.

Theorem 5. For system (15) with the controller defined
according to (19), (20) and (21), subject to the L1 norm
condition (17); and its corresponding reference system
(16), we have

‖yre f − ym‖L∞ = ‖yre f − y‖L∞ ≤
γ1√
Γc
,

‖vre f − v‖L∞ ≤
γ2√
Γc
.

Proof. See [29]. The proof follows the same structure
with the redefinitions in Appendix C.

4.2. Iterative Learning Control
Having proved that the transient property holds with

our additional feedforward signal, we are ready to de-
sign a learning law on the adaptive system for perfor-
mance improvement. The recipe is the same as before
and we will be using the nominal system to check robust
monotonic convergence by bounding the system uncer-
tainty.

4.2.1. Update Law
We use the Q filter and learning function approach

as per section 3 for simplicity and consistency with the
state feedback case:

vi+1(s) = Q(s)(vi(s) + L(s)ei(s)). (22)

Note that since we consider (16) for design and analysis,
we define the update law on the virtual control v(s) as
opposed to the actual control u(s) (see figure 5).

4.2.2. Monotonic Convergence and Robustness
We will design the learning controller under the same

assumption as in the state feedback case; xm(t) = xre f (t).
We first analyze the case of constant feedback gain, i.e.
θ(t) = θ. The closed loop reference system can then be
described as

xmi (s) = Hxm(s)vi(s) + Hxm(s)C(s)kgr(s)+

Gm(s)θT AT xmi (s) + Gm(s)σm(s) + xnr(s), (23)

where xnr(s) , (sI − Am)−1 x̂in, which leads to

ymi (s) = H̄m(s)vi(s) + H̄m(s)C(s)kgr(s)+

H̄m(s)(1 −C(s))σm(s) + cT
m(I −Gm(s)θT AT )−1xnr(s),

where H̄m(s) , cT
m(I − Gm(s)θT AT )−1Hxm(s). The fol-

lowing extends the result of theorem 4 to the output
feedback case. Note that the condition is identical in
structure to condition to (9).
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Theorem 6. The ILC system with the update law (22)
defined over H̄m(s) subject to (17) or (18), is monotoni-
cally convergent with rate µm ∈ [0, 1) ∀θ ∈ Θ if

κm ≤
µm − |Q( jω)||1 − L( jω)Hm( jω)|
|Q( jω)||L( jω)||Hm( jω)|

,

∀ω ∈ R, where

κm ,
θM2‖AT Gm(s)‖∞

1 − θM2‖AT Gm(s)‖∞
.

Proof. The proof follows the same steps as that of the-
orem 4 and is omitted.

We note that in both the state and output feedback
cases, theorems 4 and 6 show that the contraction map-
ping condition can be guaranteed for all uncertainties by
well defined relationships that result from the L1 norm
condition and bounds on the induced norms of the un-
certainties. Therefore, we can extend the convergence
conditions to time varying feedback in a similar fash-
ion. To that end, we will rewrite the plant dynamics in
operator form. Observe that in (23), the mapping θT AT

is in essence the system W that maps xi to wxi for the
special case of constant θ. Therefore, the plant dynam-
ics can be rewritten in more general form as

xmi = Hxmvi +HxmCkgr+

GmWxmi + Gmσm + xnr, (24)

whereHxm, C and Gm are Hxm(s), C(s) and Gm(s) in op-
erator notation, respectively. Note that the dynamics are
the same with the exception of W being a linear time
varying map, which prevents us from further simplifi-
cation in the s domain. Regardless, we see after some
manipulations that the L2 gain of the uncertainty and
therefore the robust monotonic convergence condition
is very similar.

Theorem 7. The ILC system with the update law (22)
defined over (24) subject to (17), is monotonically con-
vergent with rate µmtv ∈ [0, 1) ∀θ(t) ∈ Θ if

κmtv ≤
µmtv − ‖Q(s)(1 − L(s)Hm(s))‖∞

‖Q(s)L(s)Hm(s)‖∞
, (25)

where

κmtv ,
M2‖T (s)AT Hxm(s)‖∞‖1 −C(s)‖∞

1 − M2‖T (s)AT Gm(s)‖∞
,

with M2 , ‖T−1(s)‖∞θM2 .

Figure 6: Single axis flexure bearing based nanoposi-
tioner with moving magnet actuator [31]

Due to the time varying nature of the feedback un-
certainty, theorem 7 is naturally more conservative than
theorem 6. Algebraically, this is attested to the fact that
we cannot simplifyW and commute SISO operators as
in matrix notation. Physically, we can interpret this as
the effect of time varying parameters being much less
predictable than that of constant parameters. Neverthe-
less, due to the condition being conservative, we might
see in practice that the actual performance of ILC is
much better than expected. We would also like to add
that the design trade-offs of the output feedbackL1-ILC
scheme can be evaluated straightforwardly much as in
section 3.3. We omit these for the sake of brevity.

5. Simulations

To illustrate the benefits of our proposed method, we
will consider an L1 AC based ILC design on a model of
the flexure bearing based nanopositioner shown in Fig-
ure 6 [31]. In [31], the authors consider the following
output compensator

D(s) =
1.57 × 104(s + 141.5)

s(s + 4000)

×
(s2 + 159.5s + 5.01 × 104)
(s2 + 6700s + 1.92 × 107)

,

designed on the open loop transfer function from the
actuator input, identified as

P(s) =
1.28 × 1010(s2 + 5.63s + 3.34 × 105)

(s + 333.1)(s2 + 150.50s + 3.31 × 104)

×
1

(s2 + 12.43s + 3.87 × 105)
,

11



10
1

10
2

10
3

10
4

10
5

−100

−80

−60

−40

−20

0

20

Frequency (rad/s)

M
ag

ni
tu

de
 (

dB
)

Figure 7: Bode magnitude plot of the closed loop
complementary sensitivity function Tp(s) of the flexure
bearing based nanopositioner

which results in the closed loop complementary sen-
sitivity function TP(s) , D(s)P(s)/(1 + D(s)P(s)) by
unity gain feedback (Figure 7). Since P(s) was obtained
through system identification, we do a balanced realiza-
tion to come up with the system matrices Ā, b, and c
such that P(s) = cT (sI − Ā)−1b. To simulate an uncer-
tainty in the pole locations, we assume a time varying
θ(t), subject to θM∞ = 1, with a bounded derivative.

We will be considering two feedback based learning
schemes to compare on the plant (Ā, b, cT , 0) with the
uncertain feedback gain θ(t). The control objective is
to minimize the tracking error for dynamic references
within 10 rad/s, regardless of the level of uncertainty
imposed by θ(t). We would like to see similar learning
performances and converged tracking errors for every
θ(t). Furthermore, we expect that performance degrada-
tions due to abrupt changes in θ(t) to be low, and can be
compensated within a few iterations.

5.1. LTI Output Feedback based ILC (LTI-ILC) Design

We consider the output compensator of [31] and take
the control law as uLT Ii (s) = D(s)((r(s) + ui(s)) − yi(s)),
where uLT Ii (s) is the control input and ui(s) is the feed-
forward learning signal. Note that this results in the dy-
namics given by yi(s) = Tp(s)ui(s) + Tp(s)r(s), which is
similar to the iteration domain dynamics in section 3.2.2
under zero initial conditions and θ(t) = 0.

The signal ui(s) is given by the update law (8), with

Q(s) =
250

s + 250
, L(s) =

5000
s + 5000

.

The filter L(s) is designed to approximate the inverse
of Tp(s) and to keep |1 − L( jω)Tp( jω)| small over a
large bandwidth, while Q(s) is chosen to maintain sta-
bility whilst having a sufficiently high bandwidth. More

specifically, the cutoff frequency of L(s) was chosen to
be higher than that of Tp(s) for ample learning, while
Q(s) was chosen to be more than a decade faster than
the desired tracking bandwidth of 10 rad/s. The signal
ui(s) + L(s)ei(s) is passed through Q(s) twice via time
reversal to emulate zero phase filtering in continuous
time and eliminate the phase lag in the ILC signal. Note
that the gain of this process is |Q( jω)|2 due to double
filtering.

5.2. State Feedback L1 AC based ILC Design

For the proposed L1-ILC scheme, we employ a static
feedback k f b such that the closed loop response given
by (A, b, c, 0), where A = Ā − bkT

f b, is similar to Tp(s)
under zero uncertainty (i.e. θ(t) = 0). We select the
desired pole locations as the poles of the reduced order
(5th) approximation to Tp(s) to yield near identical step
responses for kgH(s) = kgcT (sI − A)−1b and Tp(s).

In the L1 AC design, we consider a 3rd order filter
and take C(s) = 1 − s3/(s + ωC)3 to better attenuate the
effects of θ(t) , which satisfies (2) for ωC ≥ 2600. To
avoid an excessive bandwidth, we choose ωC = 3000,
and also note that condition (2) can be satisfied by a
lower bandwidth through careful selection of the desired
pole locations, since the lightly damped poles of Tp(s)
(and consequently H(s) by virtue of the selected poles)
manifest as high gain feedback through θ(t) in terms of
the L1 norm condition. We consider a noisy measure-
ment scenario wherein each state is corrupted by Gaus-
sian white noise with variance 3.16×10−8, which results
in an output noise variance of 1.96×10−5. To limit noise
amplification, we take the adaptive gain Γ to be 1× 106.
For the state predictor, we select Ksp = 0 for simplicity.

For the ILC update law, we choose

Q(s) =
250

s + 250
, L(s) = kg

5000
s + 5000

,

which result in a similar learning performance to that of
the output feedback based design. As with the LTI-ILC
scheme, we filter ui(s) + L(s)ei(s) through Q(s) twice to
eliminate phase lag.

5.3. Simulation Setup

To compare the L1 AC and LTI based learning
schemes, we will be looking at unknown parameters θ(t)
with θ1(t) as the only nonzero element. The reason for
this is twofold: First, the Hankel singular values of the
states x1, x2, x3, x4, and x5 of the balanced realization
of P(s) are 910, 454, 172, 170, and 42; respectively.
In other words, x1 has a much higher contribution to the
output when compared to other states. Second, by doing
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Figure 8: Closed loop responses of theL1 adaptive con-
troller and LTI output controller to θ1(t) = sin(50t) with-
out learning

so we are able to consider large time varying uncertain-
ties without having an excessively conservative robust
monotonic convergence condition, stated as

κtv ≤
µtv − ‖Q(−s)Q(s)(1 − L(s)H(s))‖∞

‖Q(−s)Q(s)L(s)H(s)‖∞
,

for µtv ∈ [0, 1), with

κtv ,
θM∞‖1 −C(s)‖∞‖Hx1(s)‖∞

1 − θM∞‖G1(s)‖∞
,

where Hx1(s) and G1(s) are the transfer functions to the
first outputs of Hx(s) and G(s), respectively. The read-
ers can verify that the condition guarantees monotonic
convergence in the same vein as theorems 4 and 7. More
specifically, we have bounds on Hx1(s) and G1(s) since
θ(t) is zero for all elements but θ1(t) and θM∞ < θM2 ,
‖Hx1(s)‖∞ ≤ ‖Hx(s)‖∞ and ‖G1(s)‖∞ ≤ ‖Gx(s)‖∞; and
Q(−s)Q(s) due to double filtering, where Q(−s) is the
stable anticausal counterpart of Q(s). Also note that
this further implies θM∞‖G1(s)‖∞ ≤ θM2‖G(s)‖∞ < 1.

For the simulation scenarios, we consider the re-
sponses of the two schemes to a sinusoidal reference,
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(b) Converged tracking errors

Figure 9: Learning performances of the L1-ILC and
LTI-ILC schemes and for θ1(t) = sin(50t)

r(t) = sin(10t), over periods of 8 seconds, wherein each
period defines a trial. At the beginning of each trial, we
reset the clock to 0, and reinitiate the process with the
updated feedforward signals. To better make our point,
we consider noiseless measurements for the LTI feed-
back system.

5.4. Simulation Results

First, we look at the feedback response (without
learning) of the two systems to a fast parameter, selected
as θ1(t) = sin(50t). We see in figure 8 thatL1 AC clearly
outperforms LTI control with an error norm (in the L2
sense) of 0.0126 against 0.138. We also observe that the
L1 AC input is smooth and devoid of high frequency
content from the estimation loop. Then, we study the
learning performance of the two schemes and observe
in figure 9 that the L1-ILC scheme performs almost an
order of magnitude better than the LTI feedback based
system for all iterations. We note that, the converged
error of the LTI scheme is much larger than that of the
L1-ILC algorithm with significant effects due to the 50
rad/s feedback uncertainty. We look more closely at the
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Figure 10: Converged tracking error of the L1-ILC
scheme for θ1(t) = sin(50t)
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Figure 11: Learning transients of the L1-ILC and LTI-
ILC schemes due to an abrupt change in the sign of
θ1(t) = 0.1 sin(50t) at the 6th iteration

converged error of the L1-ILC architecture in figure 10
and see that the majority of the remaining error com-
prises of Gaussian noise from the measurements.

Next, we consider two scenarios wherein θ1(t) has
an abrupt change of sign at the 6th iteration. In the
first scenario, we keep the parameter at the same fre-
quency but decrease the amplitude to 0.1, thus start-
ing the trials with θ1(t) = 0.1 sin(50t) and switching to
θ1(t) = −0.1 sin(50t) at the 6th iteration. We see in fig-
ure 11 that both controllers experience a large transient
growth but converge back to equilibrium within a few
trials. We also observe that the LTI feedback scheme
performs better than before (compare to figure 9) due
to decreasing uncertainty, yet the learning performance
is still poor when compared to L1-ILC with larger tran-
sients that exceed the original feedback control perfor-
mance. In the second scenario, we assume a time in-
variant parameter with a very small amplitude and take
θ1(t) = 0.01, which is changed to θ1(t) = −0.01 at the 6th

iteration. Figure 12 shows us that the controllers show
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Figure 12: Learning transients of the L1-ILC and LTI-
ILC schemes due to an abrupt change in the sign of
θ1(t) = 0.01 at the 6th iteration

near identical learning dynamics due to the uncertainty
being close to 0. We also see that the converged LTI
error is slightly smaller than the L1 AC error due to the
limiting noise factor. However, we observe that the er-
ror growth experienced by the LTI feedback based ILC
is noticeable, whereas the L1-ILC system shows negli-
gible change.

Finally, we redirect our attention to figures 9, 11, and
12: We note that the L1-ILC scheme displays similar
performance (in terms of initial and converged errors)
regardles of the uncertainty, whereas the LTI feedback
based ILC shows approximately an order of magnitude
variance in terms of both the initial and converged er-
rors. This clearly indicates the improvement in perfor-
mance predictability for theL1-ILC system over the LTI
feedback based ILC system.

6. Conclusion

In this paper we presented a combined L1-ILC
scheme for robust precision motion control. L1 AC was
utilized to reduce the effects of parametric variation and
increase precision whilst preserving robustness against
unmodeled dynamics. This reduction in parametric un-
certainty enabled the use of aggressive ILC design to
increase system bandwidth and improve tracking per-
formance.

The combined controller is robust against paramet-
ric uncertainties and unmodeled dynamics, with high
tracking performance over a large bandwidth. Simula-
tion results on a precision nanopositioner demonstrate
that the well posed feedback controller helps us in ex-
tracting high performance from ILC and achieve near
perfect tracking even with information, bandwidth and
hardware constraints, which is especially important due
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to the complex requirements for high precision tracking
even in the presence of parametric uncertainty.
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Appendix A. Intermediate Technical Results

In this section we present some results that are help-
ful towards evaluating system uncertainties and estab-
lishing the relationship of lemma 2. These will be used
to show the existence and stability of the feedback op-
erators. In the following discussion, F1 : V1 → V2 and
F2 : V2 → V1 are operators acting on vector spaces V1
and V2.

We first give a generalization of the L1 norm condi-
tion which ensures that the objective of theL1 AC prob-
lem is well defined. While we assume that the inverse
exists, the argument is valid regardless of its existence if
we think of it as a feedback interconnection. Note that
for linear systems, the condition ‖F2F1‖ ≤ φ2 < 1 guar-
antees the existence of a left inverse as we show in the
proof of theorem 7. This is a special case of the small
gain theorem [30, page 218].

Lemma 7. Assume V1, V2 to be endowed with norms
such that ‖F1‖ ≤ φ1 < ∞ and ‖F2F1‖ ≤ φ2 < 1. Then,
‖F1(I + F2F1)−1‖ ≤ φ1(1 − φ2)−1.

Proof. Let ζ, ξ ∈ V be the input and output vectors of
I + F2F1; respectively. Since ‖F2F1‖ ≤ φ2 < 1, we
have ‖ξ‖ ≥ ‖ζ‖−‖F2F1‖‖ζ‖ ≥ (1−φ2)‖ζ‖ by the reverse
triangle inequality. Hence, ‖(I + F2F1)−1‖ ≤ (1−φ2)−1.
The result then follows by submultiplicativity.

Let F1 ∈ Cm×n, F2 ∈ Cn×m. A generalization of the
identity (I + F1F2)−1 = I − F1(I + F2F1)−1F2 to right
and left inverses of linear operators is given as follows.

Lemma 8. Let F1, F2 be linear. Then, (I+F1F2)−R ex-
ists if and only if (I+F2F1)−R exists. Moreover, a right
inverse of (I + F1F2) is I − F1(I + F2F1)−RF2, and a
right inverse of (I + F2F1) is I − F2(I + F1F2)−RF1.
The same relationship holds for left inverses, and con-
sequently inverses.

Proof. Assume I + F1F2 is right invertible. Then,
(I+F2F1)(I−F2(I+F1F2)−RF1) = I by direct com-
putation, which shows that I − F2(I + F1F2)−1F1 is a
right inverse of I + F2F1. By interchanging F1 and F2,
we can show the converse statement. The relationship

for left inverses can be shown in the same manner. Since
the existence of a right and left inverse is equivalent to
the existence of a unique inverse, our proof is complete.

The following shows that the L1 norm of a system
bounds its induced Lp norm.

Lemma 9. Let F(s) be a stable causal SISO LTI sys-
tem. Then for every input ζ ∈ Lpe, p ∈ [1,∞], the
output ξ ∈ Lpe and we have ‖ξτ‖Lp ≤ ‖F(s)‖L1‖ζτ‖Lp

[30, page 200].

Appendix B. Proofs of the Main Results

Proof of (Lemma 2). Let ζ ∈ Lm
2e, ξ ∈ Ln

2e be the in-
put and output signals; respectively. Then, by lemma 9
‖(ξk)τ‖L2 = ‖(

∑m
l=1 fkl ∗ ζl)τ‖L2 ≤

∑m
l=1 ‖ fkl‖L1‖(ζl)τ‖L2 ,

where ∗ denotes convolution. Let

δk ,
[
‖ fk1‖L1 ‖ fk2‖L1 . . . ‖ fkm‖L1

]T
,

ε ,
[
‖(ζ1)τ‖L2 ‖(ζ2)τ‖L2 . . . ‖(ζm)τ‖L2

]T
,

so
∑m

l=1 ‖( fkl)τ‖L1‖(ζl)τ‖L2 = δT
k ε. Now the Cauchy-

Schwarz inequality implies δT
k ε ≤ ‖δk‖2‖ε‖2, hence we

get
∑m

l=1 ‖( fkl)τ‖L1‖(ζl)τ‖L2 ≤ ‖δk‖2‖ε‖2 ≤ ‖δk‖1‖ε‖2.
Moreover, ‖δk‖1 ≤ ‖F(s)‖L1 and ‖ε‖2 = ‖ζτ‖L2 by def-
inition, which imply ‖(ξk)τ‖L2 ≤ ‖F(s)‖L1‖ζτ‖L2 . Thus,
‖ξτ‖L2 ≤

√
n‖F(s)‖L1‖ζτ‖L2 . By theorem 1, it follows

that ‖F(s)‖∞ ≤
√

n‖F(s)‖L1 .

Proof of (Theorem 4). By the Cauchy-Schwarz in-
equality, |θT G( jω)| ≤ ‖θ‖2‖G( jω)‖2 ≤ θM2‖G(s)‖∞,
∀ω ∈ R. Note that θM2 =

√
nθM , so by lemma 2, we

have ‖θT G(s)‖∞ ≤ θM2‖G(s)‖∞ ≤ θM1‖G(s)‖L1 < 1.
Let Gθ(s) , (θT G(s))/(1 − θT G(s)), which implies
H̄(s) = H(s)(1 + Gθ(s)). By lemma 7,

|Gθ( jω)| ≤ ‖Gθ(s)‖∞ ≤
θM2‖G(s)‖∞

1 − θM2‖G(s)‖∞
= κ,

∀ω ∈ R. Assume there exists µ ∈ [0, 1) such that

|Q( jω)(1 − L( jω)H̄( jω))| ≤
|Q( jω)||(1−L( jω)H( jω))|+κ|Q( jω)||(L( jω)||H( jω)| ≤ µ,

∀ω ∈ R. But then, this is equivalent to (9).

Proof of (Lemma 4). We extend L1 to include com-
plex transfer functions and note that the inverse Laplace
transform of 1/(s + p) is e−pt1(t), which implies
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‖(s + p)−1‖L1 = 1/Re(p), ∀p : Re(p) > 0. Without
loss of generality, assume m = n − 1. Then we have,

‖F(s)‖L1 ≤ ‖
1

s + pn
‖L1

n−1∏
k=1

‖
s + zk

s + pk
‖L1

≤
1

Re(pn)

n−1∏
k=1

1 +
|zk |

Re(pk)
+
|pk |

Re(pk)
.

Now the assumption arg(pk) ∈ [ψ, 2π − ψ] implies
1/Re(pk)→ 0 as |pk | → ∞ and |pk |/Re(pk) is bounded
for pk , 0. It follows that 1 + |zk |/Re(pk) + |pk |/Re(pk)
is O(1) for k = 1, 2, . . . , n− 1. Since 1/Re(pn)→ 0, the
result follows.

Proof of (Theorem 7). The proof follows the same
ideas of theorem 4. We first show that the L2 gain
of WGm is less than 1 due to the L1 norm condition.
Note that W is made up of 3 cascaded systems (14)
with the first one being LTI. The readers can therefore
easily verify Ψ , M2‖T (s)AT Gm(s)‖∞ to be an up-
per bound on the induced L2 norm of WGm. From
lemma 2 and the equality θM1 =

√
nθM2 it follows that

Ψ ≤ M‖Gm(s)‖L1 < 1.
Since the L2 gain of WGm is less than 1, it follows

that I −WGm is nonsingular, which implies it is one-
to-one. Hence I−WGm has a left inverse, withL2 gain
less than 1 − Ψ by lemma 7.

Let Gmθ , (I − C)(I −WGm)−LWHxm, whereHxm

is Hxm(s) in operator notation. It follows that an upper
bound on the L2 gain of Gmθ is

M2‖T (s)AT Hxm(s)‖∞‖1 −C(s)‖∞
1 − M2‖T (s)AT Gm(s)‖∞

,

which is equal to κmtv by definition. Moreover, by
lemma 8, the mapping H̄m from vi to yi is given by
H̄m = Hm(I + Gmθ). Now let Q, L be Q(s) and L(s)
in operator notation; respectively. Assume there exists
µmtv ∈ [0, 1) such that,

‖Q(I − LH̄m)‖L2 ≤ ‖Q(I − LHm)‖L2 + κmtv‖QLHm‖L2

≤ µmtv .

But then, this is equivalent to (25) by theorem 1.

Remark 7. The existence of (I−WGm)−L can also be
proven by M‖Gm(s)‖L1 < 1 or any norm that satisfies
the small gain condition since this implies thatI−WGm

is nonsingular. This property would be useful if it can-
not be shown that the L2 gain is less than the L1 norm.
For instance, if ‖F(s)‖L1 < 1, but ‖F(s)‖∞ < 1 is not
necessarily true, ‖(I − F(s))−1‖∞ ≤

√
n/(1 − ‖F(s)‖L1 )

by lemmas 2 and 7. Obviously, this would lead to a
more restrictive robust convergence condition.

Appendix C. L1 Adaptive Output Feedback Con-
troller Definitions

We list the variables that are used in section 4 below.
The readers can refer to [29] for the original definitions,
we provide several modifications to account for the ad-
dition of vi(t) in the adaptive controller.

ρ1 , (|kg|‖Hxm(s)C(s)‖L1‖r‖L∞ + ‖Hxm(s)‖L1‖vi‖L∞

+ ‖Gm(s)‖L1 (‖σm‖L∞ + Mρ2))/(1 − ‖Gm(s)‖L1 M),

where ρ2 , ‖xre f2‖L∞ ; and xre f2 (t) is defined according
to ẋre f2 (t) = Amxre f2 (t), xre f2 (0) = x̂in. Let ρ , ρ1 + ρ2

and ∆̄ , ∆m + M(ρ + γ̄‖C(s)‖L1/(1 − ‖Gm(s)‖L1 M)),
where γ̄ > 0 is arbitrary. Define

β1 , β01
‖C(s)‖L1

1 − ‖Gm(s)‖L1 M
, β2 , β02 + β01ρ,

β01 , 4∆̄M
(
dθ/θM1 + ‖Am‖L1 + ‖bm‖L1 M

)
,

β02 , 4∆̄(dσm + M‖bm‖L1 (‖C(s)‖L1 (|kg|‖r‖L∞ + ∆̄)+
‖vi‖L∞ + ∆m)),

β3 ,
λmax(Pm)
λmin(Zm)

β1, β4 , 4∆̄2 +
λmax(Pm)
λmin(Zm)

β2.

The transient bounds of the controller are given by

γ0 ,
√
αβ4/(Γcλmin(Pm))

γ1 , γ0‖C(s)‖L1/(1 − ‖Gm(s)‖L1 M),

γ2 , M‖C(s)‖L1γ1 + ‖(C(s)/(cT
o Hxm(s)))cT

o ‖L1γ0,

where co ∈ Rn is arbitrary such that cT
o Hxm(s) is mini-

mum phase and has relative degree 1.
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