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Robust Monotonically Convergent Spatial Iterative Learning
Control: Interval Systems Analysis via Discrete Fourier Transform
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Additive manufacturing (AM) systems use a layer-by-layer
paradigm to build three-dimensional structures. There are myr-
iad of advantages to AM; however, challenges with real-time
actuation and sensing relegate AM processes to be largely open-
loop processes. In this paper, we build upon the spatial iterative
learning control (SILC) strategy to close the loop in the iteration
domain in AM systems, enabling autonomous process control in
the absence of real-time sensing. We approximate the steady-
state partial differential equations of AM systems by discrete
two-dimensional convolution operators, and assume uncertain
spatially-varying kernels to have a more realistic representation
of these complex processes. From this system description, we
formalize the robust monotonic convergence (RMC) criterion
for SILC. Importantly, we use discrete Fourier transform-based
tools to study spatial dynamics, a practical framework for data-
rich spatial sensors used in AM. The theoretical results are
complemented with experiments on the AM process electrohy-
drodynamic jet printing, demonstrating that the RMC criterion
can predict the design boundary for convergent behavior for
norm-optimal SILC.

Index Terms—Iterative learning control, discrete Fourier trans-
forms, layered manufacturing, process control, robustness.

I. INTRODUCTION

ADDITIVE manufacturing (AM) technologies have at-
tracted significant attention in recent years, in particular

due to advanced capabilities not available with traditional
manufacturing methodologies. As opposed to traditional sub-
tractive manufacturing methods such as milling, AM em-
ploys a layer-by-layer sequence of selective additions of
two-dimensional (2D) layers of materials to build up three-
dimensional (3D) parts [1]. AM is advantageous for appli-
cations in which complex parts are needed in low volumes;
examples include fuel nozzles for aircraft engines [2], cus-
tom implants [3], and custom fixtures and dies for injection
molding [4]. Despite these advantages, almost all AM systems
operate in an open-loop manner [1], wherein processes are
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tuned by human operators by trial-and-error, which limits man-
ufactured part quality as processes are susceptible to variability
in material feedstocks and environmental conditions.

The limitations of AM systems discussed above point to-
wards feedback control as a potential solution to improve the
performance of these complex, uncertain processes. However,
it is very challenging to sense and actuate AM systems in
real time. In particular, 1) material addition is distributed and
requires distributed sensing such as computationally-intensive
optical and thermal machine-vision feedback [5], 2) sensors
are often noncollocated (in space or time) with the output,
as it is difficult, and sometimes impossible, to place a sensor
at the location of material addition, and 3) existing sensing
techniques often have inadequate resolutions at submicron
length scales, or insufficient sampling rates that can fail to
convey meaningful information on fast processes, where it
might be necessary to detect high-frequency changes. Taken
together, conventional feedback controllers often cannot be
applied to the process regulation problem.

The unique challenges of AM control, along with the layer-
by-layer nature of AM, make recursive control a powerful
substitute for feedback control: in the absence of real-time
feedback, data-rich optical/thermal images or topographical
measurements can be processed in between each layer to
update the process input and improve part quality in a run-to-
run fashion. This mode of offline operation (operate system,
measure output, update input) is often called run-to-run con-
trol [6] and can be applied to systems that use post-process
sensors when it is infeasible or impractical to measure the
output in real time; example sensing modes include laser pro-
filometry of a machined surface [7], computationally-intensive
machine-vision processed data [3], [8], and wireless systems in
which the reference trajectory sampling rate exceeds the sensor
signal transmission rate [9]. The offline run-to-run control
methodology can also be recognized as the iterative learning
control (ILC) paradigm, wherein the objective is to iteratively
construct the feedforward input that would achieve a desired
reference (or its approximation) using input-output data from
prior iterations [10], [11]. It is important to note that ILC has
been traditionally applied to decrease the magnitude of the
temporal tracking error e(t) of systems defined by ordinary
differential/difference equations. In contrast, AM quality is
defined by dimensional fidelity, thus the control objective is
to reduce the magnitude of a spatial error function e(x, y),
where x and y are spatial coordinate arguments in a 2D
Cartesian coordinate system.

This paper builds on the lifted- and frequency-domain
representations of spatial iterative learning control (SILC)
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introduced in [12] by discussing certain aspects of the
SILC problem pertaining specifically to AM, and develop-
ing frequency-domain methods that ensure robust monotonic
convergence (RMC) in this setting. The principal contribution
is the extension of the problem to uncertain and spatially-
varying convolution operators, enabling a more realistic mod-
eling framework for these complex processes. To maintain the
computational-efficiency associated with the discrete Fourier
transform (DFT) so that large datasets from a spatial sensor
are usable [12], the 2D convolution operators are assumed to
be subject to spatially-invariant bounds, equivalently modeled
as interval uncertainties with circulant symmetry on the lifted
plant matrix.

The tools developed here to address the problem are strongly
motivated by the target application area of AM. However, it
should be noted that they can be used in other application
areas such as distributed irrigation [13] and material removal
processes (e.g. long-wall coal mining, turning lathe operations,
excavation), and find use in 1D temporal/spatial systems, as
evidenced by the work presented in [14] that relies on the
one-dimensional (1D) DFT for synthesis and analysis. It is
also important to mention that we utilize SILC to improve
part quality of a product built in a single layer, from one
substrate to the next. For this reason, the multidimensional
repetitive process framework [15], which can model the layer-
by-layer dynamics that arise from printing multi-layer parts in
AM applications, is not considered here.

The rest of the paper is organized as follows: Section II
introduces our style of notation and presents certain prelimi-
naries. Section III defines the interval uncertainty model in the
lifted matrix representation and discusses SILC convergence
properties of interval systems. In Section IV, we estimate the
maximum allowable interval uncertainty for a given nominal
update law and plant using interval stability radii. Section V
briefly discusses the applicability of the results to iteration-
varying models and disturbances. Section VI suggests using
the stability radius in an optimization problem to synthesize
the ILC update law. Section VII demonstrates the usefulness
of the stability radius based RMC criterion via experimental
results on a microscale electrohydrodynamic jet printing sys-
tem. Concluding remarks are given in Section VIII. For a more
streamlined presentation, complementary material and proofs
of certain results are given in Appendices A, B, and C.

II. PRELIMINARIES: DFT-BASED ITERATIVE LEARNING
CONTROL

In this section we discuss the background necessary for
the analysis of the SILC strategy in the lifted and frequency
domains. In addition, we introduce the style of notation to be
used throughout the paper.

A. Notation

We use Z to represent the set of integers and N its
nonnegative subset. For an odd positive integer n, we define
the n element set

Zn , {(1− n)/2, (3− n)/2, . . . , (n− 1)/2}

if n > 1, and Zn = Z1 , {0} if n = 1. For example, for
the case of n = 5, we have Zn = Z5 , {−2,−1, 0, 1, 2}. In
the same manner, given any generic scalar function p(x, y),
where (x, y) ∈ Zm × Zn, its equivalent m × n matrix repre-
sentation is given as
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if m,n > 1. When either m = 1 or n = 1, p(x, y) can be
expressed as an m×n matrix in a similar fashion. For instance,
for p(x, y) = x+y, m = 3 and n = 5, we have the equivalent
matrix representation−3 −2 −1 0 1

−2 −1 0 1 2
−1 0 1 2 3

 ,
and for p(x, y) = x+ y2 + 2, m = 1 and n = 3, we have
the equivalent matrix representation

[
3 2 3

]
. We will

use p(x, y) interchangeably to refer to the function or its
equivalent matrix representation. The 2D DFT of p(x, y)
will be denoted P (u, v), where (u, v) ∈ Zm × Zn is the
spatial frequency; P (u, v) will also have an equivalent matrix
representation in the same manner and will be used inter-
changeably as a function or a matrix. Let p be a matrix.
Then, pT (p∗) is the transpose (Hermitian transpose) of p,
and [p]ij denotes the element in the i-th row and j-th col-
umn of p. We define the operator V so V(p) , vec(pT ),
where vec(.) is the conventional (columnwise) vectorization
operator. The Hadamard (entrywise) product of two matri-
ces is denoted by ◦. Let p1, p2, . . . , pn be square matri-
ces. Then diag(p1, p2, . . . , pn) is a block diagonal matrix
where the ith element of the the block diagonal is pi. Sim-
ilarly, circ(p1, p2, . . . , pn) denotes a block circulant matrix
in which the ith block of the middle column partition is pi,
where n is odd; e.g.

circ(p1, p2, p3) =

p2 p1 p3

p3 p2 p1

p1 p3 p2

 .
The notation Circ(m,n) represents the set of all real block
circulant matrices with circulant blocks (BCCB), where the
block partition size is m×m and the size of each block is n×n.
The symbols 4 and < will be used to denote elementwise in-
equalities; e.g p1 4 p2 means that [p1]ij ≤ [p2]ij for each i, j.
The modulus of a complex number is denoted |.|. On a final
note, ‖.‖p denotes the induced p-norm for matrices and the
vector p-norm for vectors, where p ∈ [1,∞].

B. Motivation for the DFT-based Approach

To get an insight into the need for DFT-based algorithms,
we revisit the ILC problem of discrete linear systems in the
temporal domain. It is well known that every linear operator on
a finite-dimensional vector space has a matrix representation.
In linear discrete-time ILC, this property is used to convert
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the 2D control problem into the feedback control problem of a
static multi-input multi-output system. For example, consider
a single-input single-output linear discrete-time system with
impulse response h(k), input fj(k), and output gj(k), for
every k ∈ {0, 1, . . . , n} and j ∈ N, where, without loss of
generality, we assume h(0) = 0 and h(1) 6= 0. Then, we can
cast the convolution sum into the matrix form

gj(1)
gj(2)

...
gj(n)


︸ ︷︷ ︸

gj

=


h(1) 0 . . . 0
h(2) h(1) . . . 0

...
...

. . .
...

h(n) h(n− 1) . . . h(1)


︸ ︷︷ ︸

H


fj(0)
fj(1)

...
fj(n− 1)


︸ ︷︷ ︸

fj

for all j ∈ N. This procedure is commonly called lifting,
and the system above is said to be in lifted form with the
supervectors gj and fj , which enables the control engineer to
employ matrix methods in the design and analysis of the ILC
problem.1 However, it is also easy to see that this methodology
is not suitable for large n: The most general first-order update
law fj+1 = Lf fj + Leej , where the error vector is defined
as ej , gd−gj for a given reference vector gd, involves two
matrix-vector multiplications, which areO(n2) operations. For
AM systems, the curse of dimensionality is amplified because
the spatial sensors employed (machine vision, profilometry,
etc.) are data intensive. To mitigate this issue, the 2D spa-
tial analog of this update law will be implemented using
the DFT, via Fast Fourier Transform (FFT) algorithms [12].
This reduces computational complexity of the update law
to O(n log n) since FFT algorithms are O(n log n), and the
matrix-vector product simplifies to the Hadamard (entrywise)
product of two vectors in the discrete frequency domain. We
refer the readers to [16]–[18] for discussions of computational
efficiency in ILC.

Remark 1. While it is possible to rely on a multidimensional
systems framework to overcome computational limitations, the
variety of algorithms that can be tractably synthesized and
analyzed in this setting is relatively limited. The lifted-domain
representation offers the ability to process large amounts of
data via a variety of algorithms through matrix methods, and
DFT-based algorithms form an important subset of these meth-
ods characterized by computational efficiency. The usefulness
of the DFT-based approach to ILC has been demonstrated
previously in the 1D temporal case in [14].

C. Equivalent Representations of the Plant

Consider a single-input single-output linear partial differen-
tial equation (PDE) with independent spatial variables x, y on
a compact domain, and the temporal variable t. It is assumed
that the PDE is causal, time- and spatially-invariant, and given
a bounded input with compact support that is constant in-
time, the PDE generates a bounded output that converges to a
steady-state distribution in an appropriate function norm [12].
Since the steady-state input-output behavior of this PDE can

1We will use this bold-faced notation to represent signals and systems in
lifted form.

be represented by aid of the Green’s function, we will develop
a discretized convolution representation for the spatial plant H
that models the behavior of the steady-state PDE.

Let X be the space of all functions p : Z2 → R. Then, a
spatially-invariant linear operator H : X → X can be repre-
sented by the convolution sum

gj(x, y) =
∑
m∈Z
n∈Z

h(x−m, y − n)fj(m,n)

for all j ∈ N and (x, y) ∈ Z2, where h(x, y) is the spatial
impulse response associated with H . Note that contrary to
its 1D temporal counterpart, the above equation is “non-
causal” in space. We will assume that h(x, y) and fj(x, y)
have finite support; in the case that h(x, y) extends to-
wards infinity, we will assume that it has negligible magni-
tude outside of a finite grid. More specifically, we assume
that h(x, y) = 0 for every (x, y) /∈ ZA × ZB , and fj(x, y) =0
for every (x, y) /∈ ZC × ZD and j ∈ N. As is typical in the
image processing literature, the above can then be rewritten
as

g+,j(x, y) =
∑
m∈ZM
n∈ZN

h+(x−m, y − n)f+,j(x, y) (1)

for all j ∈ N and (x, y) ∈ ZM × ZN , where the sub-
script + denotes the zero-padded extensions of the func-
tions to the domain ZM × ZN , where M = A+ C − 1
and N = B +D − 1:2

f+,j(x, y) ,

{
fj(x, y), if (x, y) ∈ ZA × ZB
0, otherwise

,

h+(x, y) ,

{
h(x, y), if (x, y) ∈ ZC × ZD
0, otherwise

,

From hereinafter, the subscript + will be dropped and we
will assume that all relevant functions are properly extended.
The zero-padding process introduces coordinates in the input
vector that are constrained to be zero, which means that
we have complete freedom in choosing the elements of the
matrix H in the columns that correspond to said coordinates.
In a way, we introduce a pseudo-periodicity in the impulse
response so that we can utilize the DFT to our advantage. As
a result of the zero-padding procedure, we can recover a plant
matrix H that is BCCB, which enables us to use the 2D DFT
during control synthesis and analysis:

gj = Hfj ∀j ∈ N, (2)

where H , circ(H(1−M)/2,H(3−M)/2, . . . ,H(M−1)/2),

Hi , circ(h(i, (1−N)/2), h(i, (3−N)/2), . . . ,

h(i, (N − 1)/2)) ∀i ∈ ZM ,

and gj , V(gj(x, y)), fj , V(fj(x, y)). The plant opera-
tor H has the eigendecomposition W∗ΛHW, where W
is a unitary matrix that is invariant over Circ(M,N), and

2The assumption that A,B,C,D are odd integers is rather for convenience,
so that functions and their extensions have defined center coordinates.
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the eigenvalue matrix ΛH , diag(V(H(u, v))). The com-
plex matrix W is also the matrix representation of the
normalized 2D DFT; e.g. for the 2D function fj(x, y), its
Fourier transform is V(Fj(u, v)) =

√
MNWfj . Conversely,

for any H ∈ Circ(M,N), one can extract a 2D impulse
response function by taking the inverse DFT of its eigenvalue
matrix ΛH, given by the decomposition of W∗ΛHW. As
a result, we have the following equivalent frequency-domain
representation:

Gj(u, v) = H(u, v) ◦ Fj(u, v) ∀j ∈ N. (3)

Other relevant properties of the matrix H, and hence BCCB
matrices, are listed below without proof. These follow by
definition and from the eigendecomposition introduced above;
see [12] for further details.

1) The spectral radius and the maximal singular value of H
are equal.

2) H∞ norm: The induced 2-norm of H is given by
the maximum modulus of its DFT representation;
i.e. ‖H‖2 =

∥∥H(u, v)
∥∥
∞ , max(u,v)∈ZM×ZN |H(u, v)|.

3) The induced 1-, 2-, and infinity norms of H sat-
isfy ‖H‖2 ≤‖H‖1 =‖H‖∞.

The last property follows from Corollary 2.3.2 of [19], which
states the induced norm inequality ‖.‖22 ≤‖.‖1‖.‖∞.

The representation (3) shows that the computation of the
output in the frequency domain requires pointwise multiplica-
tion, an O(MN) operation, as opposed to the lifted form in
which we have the O((MN)2) matrix multiplication. Thus,
for Lf ,Le ∈ Circ(M,N), it is much faster to take forward
transforms, compute

Fj+1(u, v) = Lf (u, v) ◦ Fj(u, v) + Le(u, v) ◦ Ej(u, v),

and take the inverse transform to recover fj+1(x, y), via FFT
algorithms. Thus, our aim is to synthesize BCCB matrices Lf

and Le, that are suitable for large-scale computations.

III. INTERVAL MODELS FOR UNCERTAIN SYSTEMS

AM processes are innately spatially varying as the pro-
cess physics, described by PDEs on a finite domain, yield
input/output responses that can vary significantly from the
infinite-domain response near the boundaries. Thus, the
spatially-invariant nominal model given in (1), based on the
notion of Green’s function as the convolution kernel to solve
PDEs on the infinite domain, is unrealistic for AM applica-
tions. At first glance, this observation suggests a reformulation
of (1) to accommodate a spatially-varying convolution kernel.
However, a transformation of a spatially-varying form of (1)
into the frequency domain does not exist, to the best of the
authors’ knowledge. To maintain the computational efficiency
of the frequency-domain representation, and capture the kernel
spatial variation and modeling uncertainties seen in AM, we
formulate the problem as that of robustness under interval un-
certainties with spatially-invariant bounds. Our definitions of
interval uncertainties extend the temporal interval uncertainty
work of [20], [21] to the SILC framework.

A. Interval Uncertain Plants

The 2D convolution representation of the input-output op-
erator can be easily generalized to accommodate uncertainties
and spatial variations in the dynamics of the system:

gj(x, y) =
∑
m∈ZM
n∈ZN

h(x,y)(x − m, y − n)fj(m,n)

for all j ∈ N and (x, y) ∈ ZM × ZN , where

h(x,y)(m,n) ∈ [
¯
h(m,n), h̄(m,n)]

∀(m,n), (x, y) ∈ ZM × ZB .

The function h(x,y)(m,n) is the uncertain response to an
impulse applied at coordinate (x, y), subject to the lower
bound

¯
h(m,n) and upper bound h̄(m,n). These bounds

are chosen to be spatially-invariant based on a hypothetical
identification scenario where the system response is measured
at a few randomly selected coordinates. The convolution kernel
bounds reflect the bounds on spatial variance of the impulse
response. In addition, the choice of spatially-invariant bounds
are meant to facilitate the usage of DFT-based tools. For
analysis purposes, the system can be lifted into the input-
output form gj = Hfj , where gj and fj are the same as before.
Although the plant matrix H is not necessarily BCCB, it is
subject to the BCCB bounds

¯
H 4 H 4 H̄, where

¯
H , circ(

¯
H(1−M)/2, ¯

H(3−M)/2, . . . , ¯
H(M−1)/2),

H̄ , circ(H̄(1−M)/2, H̄(3−M)/2, . . . , H̄(M−1)/2),

and

¯
Hi , circ(

¯
h(i, (1−N)/2),

¯
h(i, (3−N)/2), . . . ,

¯
h(i, (N − 1)/2)) ∀i ∈ ZM ,

H̄i , circ(h̄(i, (1−N)/2), h̄(i, (3−N)/2), . . . ,
h̄(i, (N − 1)/2)) ∀i ∈ ZM .

We also define the set of interval matrices HI and the set
of vertex matrices HV :

HI , {P ∈ RMN×MN :
¯
H 4 P 4 H̄},

HV , {P ∈ HI : [P]ij ∈ {[
¯
H]ij , [H̄]ij}, (i, j) ∈ (ZMN )2}.

Further, we define the center matrix Ho , (
¯
H + H̄)/2, which

is the nominal spatially-invariant plant that will be used to
design the update law.

The interval uncertainty model defined as such is a special
case of the polytopic uncertainty model on H: The set HI is
a compact convex matrix polytope (specifically, a hyperrect-
angle) with its vertices given by HV ; i.e. HI is the set of all
convex combinations of the elements of HV .

Remark 2. The uncertainty description
¯
H 4 H 4 H̄ is easier

to work with, but conservative in the sense that those columns
of H corresponding to the zero-padded coordinates need not
be uncertain.
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B. Nominal Stability and Convergence

As the readers might expect, the nominal stability and
convergence properties of the system extends trivially from
temporal ILC. Given the update law

fj+1 = Lf fj + Le(gd − gj), ∀j ∈ N, (4)

the nominal system is
1) asymptotically stable if and only if Lf −LeHo is Schur,

and
2) monotonically convergent in a given norm‖.‖ if and only

if the corresponding induced norm satisfies

γo ,‖Lf − LeHo‖ < 1.

Here, monotonic convergence refers to that of the input vector;
that is, the condition on γo guarantees the existence of a fixed
point f∞ such that

∥∥f∞ − fj+1

∥∥ ≤ γo∥∥f∞ − fj
∥∥ for all j ∈ N.

One special case is when Lf ,Le ∈ Circ(M,N), and thus
the 2-norm monotonic convergence criterion can be expressed
in the frequency domain as∥∥Lf (u, v)− Le(u, v) ◦Ho(u, v)

∥∥
∞ < 1.

We also note that the majority of existing design techniques
for linear discrete-time ILC can be directly extended to the
spatial case as most methods assume little more than linearity
and do not explicitly account for causality.

C. The Robust Monotonic Convergence Problem

In general, the problem of ensuring asymptotic stability for
all H ∈ HI is a difficult problem. If the plant matrix H is
allowed to be iteration varying, then robust stability necessi-
tates checking whether the joint spectral radius is strictly less
than one, which has been conjectured to be an undecidable
problem [22]. As our assumption is that of interval uncertain
dynamics, we will focus on the easier (but practically more
desirable) problem of guaranteeing monotonic convergence for
all H ∈ HI . The robust monotonic convergence problem is
that of ensuring

max
H∈HI

‖Lf − LeH‖ < 1

for a given induced norm ‖.‖. The following stability test is a
generalization of Theorems 4.12 and 4.13 of [20], which shows
that it suffices to check a finite set of matrices to ensure the
robust contraction condition.

Proposition 1. For any matrices Lf ,Le and any norm ‖.‖,
not necessarily induced, the following is true:

max
H∈HI

‖Lf − LeH‖ = max
H∈HV

‖Lf − LeH‖ (5)

Proposition 1 generalizes Theorems 4.12 and 4.13 of [20]
along several directions. Mainly, it shows that the findings
of these results hold for 2D (spatially-varying, “noncausal”)
systems, regardless of the choice of norm. Of course, it is
possible to find efficient tests that require fewer number of
computations for specific norms. We are primarily interested
in the induced norm cases since these correspond to robust
monotonic convergence; one example for such a test is given

in Appendix B. Another example is the method of computing
the largest singular value of interval matrices presented in [23],
which can be used to estimate maxH∈HI‖Lf − LeH‖2 and
ensure robustness in the 2-norm topology.3

Remark 3. Proposition 1 extends directly to more general
polytopic uncertainty models on the plant matrix H, as can
be seen in the proof in Appendix A. More specifically, since
the proof solely invokes the polytopic structure of HI , with no
reference to the fact that it is a set of interval matrices, given
any compact convex polytope Ĥ ⊂ RMN×MN with vertex
set ĤV ⊂ Ĥ, it follows that

max
H∈Ĥ
‖Lf − LeH‖ = max

H∈ĤV

‖Lf − LeH‖ .

The induced norm robust monotonic convergence tests,
while useful, do not give us much insight on the design of
the matrices Lf and Le. Rather, we will concentrate on the
problem of quantifying the allowable perturbations on the
nominal plant such that asymptotic stability and monotonic
convergence are preserved. These problems will be resolved
in the following sections. However, before proceeding, a
fundamental issue that arises in the context of AM must be
addressed.

D. Constrained Systems

Up until this point, we have ignored the fact that the SILC in
the context of AM is in essence a constrained control problem.
Namely, we have the following elementwise constraints:

1) The sign constraint: As the name additive manufac-
turing suggests, one can only add material and not
subtract. This can be expressed as nonnegativity con-
straints on the input and the impulse response; fj < 0
and H̄ < H <

¯
H < 0.

2) The zero-padding constraint: Certain elements of the
input vector are constrained to be zero due to the zero-
padding assumption.

3) Actuator saturation constraint: The input is con-
strained by an upper (and possibly a lower) bound that
is invariant in space.

Observe that when fj < 0, it is necessary and sufficient for
the plant matrix to satisfy the constraint H < 0 so that the
output gj = Hf j is elementwise nonnegative. Indeed, the
inequality gj < 0 is obvious when both H and fj are ele-
mentwise nonnegative. On the other hand, if H has a negative
element in row i, and fj is selected as the standard basis vector
pointing in the direction of the i-th axis of RMN (that is, every
component of fj is zero, save for the i-th component, which
is one), then gj has a positive component.

Constrained ILC is a problem that has been studied in
various works [24]–[29]. We will not discuss the constrained
control problem in detail and instead analyze the linear ap-
proximation. To verify the validity of this approximation, we
rely on a general input-constrained system of the form

gj = Hf j + d fj ∈ f I (6)

3Note that this estimate is not necessarily exact: while ‖Lf −LeH
I‖ is a

compact convex polytope (see the proof of Proposition 1), it is not necessarily
an interval matrix.
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for all j ∈ N, where d is an iteration-invariant term that
includes the combined effect of initial conditions and pertur-
bations, and

f I , [
¯
a1, ā1]× [

¯
a2, ā2]× [

¯
aMN , āMN ] ⊂ RMN (7)

for some vectors

¯
a , (

¯
a1,

¯
a2, . . . ,

¯
aMN ),

ā , (ā1, ā2, . . . , āMN ),

satisfying
¯
a 4 ā. Here,

¯
a and ā are meant to represent and

generalize the elementwise constraints on the input fj , and
the notation f I refers to the interval structure in (7). The
constraint H < 0 is omitted in (6) since it is a specific case
of the model described by (6)-(7), and this property is not
needed for the subsequent proposition discussing monotonic
convergence with constraints. For the update law, it is assumed
that

fj+1 = sat¯
a
ā(Lf fj + Le(gd − gj)) ∀j ∈ N, (8)

where sat¯
a
ā is a vector saturation function acting in an el-

ementwise fashion, defined in the proof of Proposition 2.
The following result states that the monotonic convergence
of the unconstrained system is a sufficient condition for the
monotonic convergence of the input-constrained system.

Proposition 2. For a given p-norm ‖.‖p, where p ∈ [1,∞], if
the contraction condition

max
H∈HI

‖Lf − LeH‖p = max
H∈HV

‖Lf − LeH‖p ≤ γ < 1

holds, the input of the constrained system (6)-(8) is mono-
tonically convergent with rate γ in the p-norm topology for
any H ∈ HI .

Remark 4. For the case of Lf = I, it is common to analyze
monotonic convergence in the error vector, which necessitates
that I− LeH is a contraction for all H ∈ HI . Unfortunately,
this does not imply monotonic convergence of the error for
the constrained case (for example, see algorithm 2 of [24]),
hence our motivation for concentrating on input monotonic
convergence.

Remark 5. As stated in the introduction, the layer-by-layer
dynamics arising in many AM applications are best rep-
resented in the repetitive process framework. An accurate
repetitive process model for such applications should con-
sider constraints, nonlinearities, dependence on independent
variables other than spatial coordinates (x, y) and time t,
time-varying factors, delays, for both the in-layer and layer-
to-layer dynamics. As we focus on the dynamics of a single
layer, based on a scenario in which the build quality of a
single-layer product is improved via ILC, and the single-
layer dynamics of the application example of Section VII
can be represented by the linear spatially-varying model
presented in this section, these more complex models will
not be investigated. This approach is based on the implicit
assumption that as in differential/difference equations, a linear
model is valid around the equilibrium. A similar linearization-
based approach for AM systems has been explored in [30].
A rigorous basis for linearization for a class of repetitive
processes is presented in [31].

IV. INTERVAL STABILITY RADII USING THE DFT-BASED
LYAPUNOV EQUATION

In this section, we present the notion of interval stability
radii in SILC as it relates to our problem. As in multivariable
linear control, the radii will define the largest ball centered
around the nominal system in a given induced norm topology
so that asymptotic stability, or monotonic convergence, is
preserved. The idea is to ensure a linear matrix inequality of
the form

(Lf − LeH)∗P(Lf − LeH)−P < 0 ∀ H ∈ HI ,

based on the Lyapunov equation for the nominal plant, as this
implies that the eigenvalues of Lf − LeH are inside the unit
disk for all H ∈ HI .

We begin by defining the radius matrix Hr , (H̄−
¯
H)/2,

which is used to define an additive perturbation to the center
matrix to quantify robustness via the Lyapunov equation.
From this point onward, we will assume that Lf and Le are
in Circ(M,N).

A. Quantification of the Uncertainty

The size of the interval uncertainty set, as defined by
the radius matrix Hr, can be quantified equivalently by the
induced 1- or infinity norms. It is natural to use the 1- or
the infinity norm of the uncertainty as these are defined to
be the maximum absolute row or column sums. Interestingly,
due to the symmetry of the uncertainty set about zero for
each coordinate, the induced 2-norm quantification of the
uncertainty is equivalent to these as shown below.

Proposition 3. For any p ∈ {1, 2,∞} the following is true:

max
−Hr4Hδ4Hr

‖Hδ‖p =‖Hr‖1 =‖Hr‖∞ =‖Hr‖2 .

Hence, we define rint ,‖Hr‖1 as the equivalent quantifier
of the size of the uncertainty set over the induced 1-, 2-,
and infinity norms. Note that rint also equals the l1 norm
of (h̄(x, y)−

¯
h(x, y))/2.

B. DFT Solution of the Lyapunov Equation

Recall that the nominal asymptotic stability condition in the
supervector framework dictates that the eigenvalues of the ma-
trix To , Lf − LeHo are in the open unit disk. Consequently,
the nominal asymptotic stability condition can be equivalently
represented by the discrete Lyapunov equation:

L(To,P) , T∗oPTo −P = −I, (9)

where P is symmetric and positive definite. Due to our as-
sumption that the update law matrices Lf ,Le ∈ Circ(M,N),
the equation can be solved algebraically via the 2D DFT,
leading to

P (u, v) =
1

1− |To(u, v)|2
∀(u, v) ∈ ZM × ZN . (10)

Note that the above is well defined if To is Schur.
The advantage of the above identity is that the Lyapunov

equation can be solved efficiently for large sample sizes via
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the DFT. Moreover, if the plant uncertainty is assumed to be
spatially-invariant, frequency-based methods can be employed
to robustly shape the “loop”. We refer the interested readers to
the results of Chapter 5 of [20], which can easily be specialized
to limit uncertainties to BCCB matrices.

C. Interval Asymptotic-Stability Radius

The interval asymptotic-stability radius estimate rasymp
max is a

measure of the allowable interval uncertainty such that asymp-
totic stability is preserved. The estimate can be computed for
any given induced matrix norm ‖.‖ such that if

max
−Hr4Hδ4Hr

‖Hδ‖ < rasymp
max ,

the ILC system is robustly asymptotically stable [20].
The quantity rasymp

max is only an estimate of the allowable
perturbations to the plant and could therefore be conserva-
tive. As we have shown that the radius uncertainty can be
equivalently quantified in terms of the induced 1-, 2-, and
infinity norms, a possible approach to find tighter bounds is
to compute the radius for these three norms and take the
maximum of these as the allowable interval uncertainty.4 We
will instead concentrate on the 2-norm based radius since it
can be efficiently computed in the frequency domain. Another
advantage to this computation is that the maximization of the
radius, or other problems relating to optimality, is a much
more straightforward problem in the frequency domain. Using
the solution of the Lyapunov equation, the definition of the
estimate rasymp

max follows with trivial substitutions to the proof
of Theorem 5.2 of [20]:

rasymp
max ,

−‖To‖2 +
√
‖To‖22 +‖P‖−1

2

‖Le‖2

=
−
∥∥To(u, v)

∥∥
∞ +

√∥∥To(u, v)
∥∥2

∞ +
∥∥P (u, v)

∥∥−1

∞∥∥Le(u, v)
∥∥
∞

=
1−
∥∥To(u, v)

∥∥
∞∥∥Le(u, v)

∥∥
∞

,

where the second equality follows from (10), as∥∥P (u, v)
∥∥
∞ = (1−

∥∥To(u, v)
∥∥2

∞)−1.

D. Interval Monotonic-Convergence Radius

The concept of interval asymptotic-stability radius can be
extended to define a radius of monotonic convergence. First,
we define the augmented matrix

Taug
o ,

[
0 T∗o

To 0

]
.

Note that the spectral radius of Taug
o is equal to the maximum

singular value of To as can be seen from block matrix
determinant formulas. Then, the solution Paug of the following
Lyapunov equation is symmetric and positive definite, since

4Recall that asymptotic stability does not depend on the choice of norm
and necessitates that the spectral radius is strictly less than one.

the spectral radius and the maximum singular value of the
BCCB matrix To are equal:

(Taug
o )∗PaugTaug

o −Paug = −I.

The augmented Lyapunov equation will ensure that the sin-
gular values of Lf − LeH are strictly less than one for
all H ∈ HI . Thus, as opposed to the previous case, we will
compute a stability radius that ensures monotonic convergence
strictly in the 2-norm topology.

Unlike the previous Lyapunov equation, it is not obvious
that we can use the DFT to solve for Paug since Taug

o is not
BCCB. However, by direct substitution, it is trivial to show
that Paug = diag(P,P) where P is the inverse DFT of (10);
i.e. the solution of the Lyapunov equation (9). Furthermore,
we have ‖Taug

o ‖2 =
∥∥To(u, v)

∥∥
∞, and

‖Paug‖2 =‖P‖2 = (1−
∥∥To(u, v)

∥∥2

∞)−1.

As a result, the interval monotonic-convergence radius esti-
mate rmono

max can be given by the following formula, which
turns out to be identical to the estimate rasymp

max :

rmono
max ,

−‖Taug
o ‖2 +

√∥∥Taug
o

∥∥2

2
+‖Paug‖−1

2

‖Le‖2

=
1−
∥∥To(u, v)

∥∥
∞∥∥Le(u, v)

∥∥
∞

= rasymp
max .

(11)

As the two estimates are found to be equal, henceforth we will
refer to them simply as the “stability-radius estimate”, which
will be denoted rmax.

The identity computes a tighter lower bound on the interval
monotonic convergence radius in the 2-norm topology than
the one defined in Theorem 5.6 and Corollary 5.7 of [20],
since ‖.‖2 ≤‖.‖1 =‖.‖∞ for BCCB matrices. As such, we
require a small modification to the proof, which is discussed
in Appendix C.

Remark 6. The readers might note that the resulting identity
for rmax could have been computed via the triangle inequality
on the perturbed system (see the convergence rate computation
in the next subsection), similar to Theorem 4 of [11] and
Theorem 7 of [32]. This is somewhat surprising and would not
necessarily be the general case for spatially-varying update
laws and/or nominal plants. Whether the Lyapunov-based
methodology results in less conservative bounds is an open
question.

E. Worst-Case Convergence Rate

The condition rint < rmax ensures that the singular val-
ues of Lf − LeH are strictly less than one. More strongly,
the bound guarantees that the set of singular values is
strictly bounded away from zero. The formal argument for
this is due to the compactness of HI . Because the trans-
formation H 7→ Lf − LeH is affine, it is continuous and
maps HI to another compact set. As a result, the proposi-
tion ‖Lf − LeH‖2 <1 for all H ∈ HI implies

γ , max
H∈HI

‖Lf − LeH‖2 < 1.
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Therefore, the worst-case convergence rate γ can be com-
puted exactly by aid of Proposition 1. As this process re-
quires 2(MN)2 computations, it makes sense to rely on a
simple estimate. Assume that the plant perturbation satis-
fies −Hr 4 Hδ 4 Hr. Then,∥∥Lf − Le(Ho + Hδ)

∥∥
2

=‖To − LeHδ‖2
≤‖To‖2 +‖Le‖2‖Hδ‖2
≤
∥∥To(u, v)

∥∥
∞ +

∥∥Le(u, v)
∥∥
∞ rint

< 1.

The results of this section are conveniently summarized with
the following theorem:

Theorem 1. The ILC system (2) with the update law (4),
where Lf ,Le ∈ Circ(M,N), is robustly monotonically con-
vergent for all H ∈ HI in the 2-norm topology if rint ≤ rmax;
in other words, if

‖Hr‖1 ≤
1−
∥∥To(u, v)

∥∥
∞∥∥Le(u, v)

∥∥
∞

.

Furthermore, if rint ≤ rmax, then

γ , max
H∈HI

‖Lf − LeH‖2 ≤
∥∥To(u, v)

∥∥
∞ + rint

∥∥Le(u, v)
∥∥
∞ .

V. ON ITERATION-VARYING UNCERTAINTIES AND
DISTURBANCES

Although we have not explicitly defined an iteration-varying
plant in (1), we note that a linear ILC system is stable in the
presence of iteration-varying uncertainties if the update law
is robustly monotonically convergent within the uncertainty
set. Furthermore, the gain of the matrix Le, along with the
worst-case convergence rate, defines a measure of the steady-
state deviations from the nominal performance in the presence
of uncertainties [33]. This measure, which we denote as ϕ,
is given by the following formula, and generally speaking,
lower values of ϕ signifies less variation in the steady-state
performance when compared to the nominal system without
disturbances:

ϕ =

∥∥Le(u, v)
∥∥
∞

1− (
∥∥To(u, v)

∥∥
∞ + rint

∥∥Le(u, v)
∥∥
∞)

= (rmax − rint)
−1.

Therefore, the predictability of the system increases as the
stability radius increased. However, this increase might come
at the expense of nominal performance.

As compared to other methodologies in the literature,
minimization of the norm-based measure we have outlined
above makes more practical sense with respect to our target
applications. It is practically unlikely that the spatial dynamics
satisfy higher-order internal models along the iteration axis.
On the other hand H∞ methods yield update laws that are
computationally infeasible, as the resulting algorithms are
time-varying (for temporal systems) and have extremely high5

order [20], even though it has been noted in [34] that higher-
order algorithms are no more optimal than first-order algo-
rithms when it comes to rejection of stochastic disturbances.

5More specifically, if n data points are collected at each trial, the resulting
algorithm is n-th order.

VI. UPDATE LAW DESIGN VIA THE STABILITY RADIUS

In this section we discuss the optimal design of the update
law with respect to the stability-radius estimate. As there
is a trade-off between the estimate and nominal tracking
performance, it makes sense to include the nominal steady-
state error in the optimization problem.

In the case of the nominal iteration-invariant system, the
limiting performance is defined by the reference-to-error trans-
fer function S(u, v), which we will refer to as the sensitivity
function for the obvious reason:

S(u, v) ,
1− Lf (u, v)

1− To(u, v)
∀(u, v) ∈ ZM × ZN .

Hence, while decreasing sensitivity gains imply better tracking
for nominal systems, this might come at the expense of
increased steady-state variations under uncertainties.

A. Optimal Design

Based on our previous discussion, along the lines of [33],
we suggest the following general optimization problem for the
design of the update law matrices Lf (u, v) and Le(u, v):

minimize
Lf (u,v),Le(u,v)

F(r−1
max,

∥∥S(u, v)
∥∥
∞ , γ) ≥ 0

subject to
∥∥S(u, v)

∥∥
∞ ≤ s̄ ≤ 1,

rmax ≥ rint,

γ ≤ γ̄ < 1,

where s̄ is an acceptable sensitivity gain and γ̄ is an acceptable
convergence rate. The specifics of the cost function F would
naturally depend on the nature of the application, such as the
level of uncertainty and disturbances. Of course, it is possible
to modify this problem in many ways. One obvious change
is to require the constraints on the sensitivity function to be
frequency-dependent. The DFT formulation is computationally
advantageous in posing the ILC problem as a constrained
minimization shown above, since the matrix multiplication
and inversion operations encountered in the spatial domain
simplify to pointwise multiplication and division. As such, one
might also take the arguments to the optimization problem to
be frequency-dependent transfer functions.

B. Feasibility of Perfect Tracking under Uncertainties

We discuss the special case of Lf = I, which is the widely-
known necessary and sufficient condition for perfect track-
ing for iteration-invariant systems, derived from the internal
model principle, when (5) holds. Since (11) describes the
estimates compactly in the frequency domain, the optimiza-
tion problem of maximizing the stability radius estimate
can be solved by fixing the frequency (u, v) ∈ ZM × ZN ,
and studying the auxiliary problem of maximizing the quan-
tity (1− |To(u, v)|)/|Le(u, v)|. First, note that the identity

|Le(u, v)| = |Le(u, v)Ho(u, v)|
|Ho(u, v)|

∀(u, v) ∈ ZM × ZN

implies that the minimization of |Le(u, v)| is equivalent to the
minimization of |Le(u, v)Ho(u, v)| for all (u, v) ∈ ZM ×ZN .
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Fig. 1: Illustration of the auxiliary optimization problem for
stability-radius maximization for the specific case Lf = I.
Given |1− Le(u, v)Ho(u, v)| = α(u, v), the complex num-
ber Le(u, v)Ho(u, v) with the minimum magnitude is the
outwards normal to the α(u, v) circle at α(u, v), with mag-
nitude 1 − α(u, v). The solid black arrow is the optimal
vector −Le(u, v)Ho(u, v).

Given the constraint

|To(u, v)| = |1− Le(u, v)Ho(u, v)|

= α(u, v) ∈
[
0,
∥∥To(u, v)

∥∥
∞

]
∀u ∈ ZM , v ∈ ZN ,

where
∥∥To(u, v)

∥∥
∞ < 1, the minimizer of |Le(u, v)Ho(u, v)|

is the shortest distance vector from the α(u, v) circle centered
at the origin to 1 (see Fig. 1), which requires

Le(u, v) = (1− α(u, v))/Ho(u, v) ∀(u, v) ∈ ZM × ZN .

Now we have,

|Le(u, v)| = 1− α(u, v)

|Ho(u, v)|

≥
1−
∥∥To(u, v)

∥∥
∞

|Ho(u, v)|
∀(u, v) ∈ ZM × ZN .

Hence, if α(u, v) =
∥∥To(u, v)

∥∥
∞ for all (u, v) ∈ ZM × ZN ,

it follows that

∥∥Le(u, v)
∥∥
∞ = (1−

∥∥To(u, v)
∥∥
∞)

 min
u∈ZM
v∈ZN

|H(u, v)|

−1

.

Thus, the stability-radius estimate is equal to the minimum
modulus of Ho(u, v), the minimum eigenvalue perturbation
to Ho that results in singularity:

rmax = min
u∈ZM
v∈ZN

|Ho(u, v)|.

In other words, the estimate is given by the H∞ norm of the
inverse of H(u, v). Therefore, perfect tracking is a feasible
objective for the uncertain system if the uncertainty rint is
lower than the gain of the inverse system;

rint =‖Hr‖1 < min
u∈ZM
v∈ZN

|Ho(u, v)|,

as discussed for the 1D temporal case in [35].

How−1LeK

Lf (Hδ)j

gj

dj
fjfj+1gd

Controller Plant

Fig. 2: Precompensation in the iteration domain: Since ILC
can be interpreted as feedback control in the iteration domain,
it is easy to conclude aggressive learning might amplify
disturbances. When Lf 6= I, the precompensator K can be
used to partially recover the tracking performance. Here, w−1

represents the trial-delay operator; (Hδ)j is the plant pertur-
bation and dj is a term that represents disturbances, noise,
and the effect of initial conditions, both iteration-varying.

C. When Perfect Tracking is not Feasible or Desirable

When the additive uncertainty is high in magnitude (Section
VI-B), and/or the system is subject to iteration-varying effects,
perfect tracking is an infeasible objective. Depending on the
level of uncertainty, minimizing the measure ϕ (in other words,
the relative error) can be taken as an objective of primary
importance over the steady-state (in other words, the absolute
error) performance [33]. In the case of manufacturing appli-
cations, precision is arguably more important than accuracy,
and repeatable errors could be preferred.6 If perfect tracking
is infeasible or undesirable, precompensation in the iteration
domain (see Fig. 2) can be used as an ad hoc fix to recover7

tracking performance [33]. While this precompensator can be
constructed using empirical data, a simple choice is given
by inverting the nominal “complementary sensitivity func-
tion”, 1 − S(u, v) for all (u, v)(u, v) ∈ ZM × ZN (i.e., the
steady-state reference-to-output transfer function):

Ko(u, v) =
Le(u, v)Ho(u, v)

1− To(u, v)
∀(u, v) ∈ ZM × ZN .

VII. CASE STUDY: NORM-OPTIMAL SILC APPLIED TO
ELECTROHYDRODYNAMIC JET PRINTING

This section presents a case study of a norm-optimal
SILC (NO-SILC) update law, designed using the RMC cri-
terion in Theorem 1 to predict stability and practical con-
vergence in the presence of spatially/iteration-varying un-
certainties, applied to the microscale-AM process electro-
hydrodynamic jet (e-jet) printing. Here, we provide cursory
information on the e-jet system with integrated atomic force
microscope (AFM) sensing; the complete system description
can be found in [36].

A. System Model

E-jet printing is a microscale-AM process that can achieve
a smaller resolution than ink-jet printing and can use a diverse

6Another valid reason for this approach is the difficulty or impossibility of
applying feedback control to reduce the effect of nonrepetitive disturbances
for additive manufacturing applications.

7This is akin to the fact that precompensation can be used to recover DC
gains of linear systems under state-feedback.
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Fig. 3: E-jet system and systems description. a) Compo-
nents of a standard e-jet printing system. b) The input is a
voltage pulse applied at spatial coordinate (x, y) with pulse
width fj (x, y). c) AFM scan of the output gj(x, y), which
is the steady-state topography of the deposited material at
discrete coordinates (x, y). d) Identified nominal response ho,
along with the upper and lower bounds of the interval model, h
and h̄, respectively. The cross sections of the impulse response
models at y = 0 are shown for the σ, 2σ, and 3σ cases for h
and h̄, along with a surface plot illustrating the 2σ case.

array of functional materials [37]. The standard e-jet printing
system consists of an ink chamber, back-pressure source, a
conductive nozzle, a conductive substrate, high-voltage power
supply, and translational stages (Fig. 3a). In the printing mode
used in our case study, the electrical potential between the
substrate and the nozzle is pulsed from Vlow to Vhigh. The
electric field draws the ink into a cone, which is then ejected
as a single drop from the tip of the cone. Here, the input
to the system is the width of the voltage pulse fj (x, y)
applied at coordinate (x, y). By coordinating the position
of the nozzle (x, y) and input fj (x, y), complex microscale
structures can be fabricated. The system output gj (x, y) is the
topography of the fabricated structure (Fig. 3c). This particular
e-jet system has an integrated atomic force microscope (AFM)
to measure the part topography at each SILC iteration.

In lieu of using the solution of the PDE representing the
dynamics of material accumulation in e-jet printing, with
assumed and experimentally determined parameters, we use
the system identification method described in [38] to compute
the 3 × 3 spatial impulse response at steady-state (Fig. 3d).
Our system identification method permits us to compute the
nominal response ho. To observe how the RMC criterion
is affected by differing levels of uncertainty, we consider
three different cases for the impulse response bounds and
define

¯
h = ho − aσ1(3, 3) and h̄ = ho + aσ1(3, 3), where σ

is the standard deviation of the identified nominal impulse

response, and 1(3, 3) is a 3×3 matrix of 1’s, bounding 68.2%,
95.4%, and 99.6% of the potential system responses for the
case of a = 1, a = 2, and a = 3, respectively.8 Here, the
functions

¯
h and h̄ represent the bounds on the distribution

of the material added to the substrate in response to a unit
input. For example, when a unit voltage pulse is applied at
coordinate (x, y), the material height at coordinate (x+ 1, y)
will be between

¯
h(1, 0) and h̄(1, 0). Also note that e-jet is a

naturally constrained system (the process can only add mate-
rial and the pulse width fj(x, y) can only be positive) subject
to high levels of iteration-varying uncertainties, in particular
due to the difficulty of modeling the complex process physics
at the microscale.

B. Application of the RMC Criterion to Norm-Optimal SILC

RMC is evaluated for NO-SILC update law designs. The
NO-SILC update laws considered here aim to minimize the
frequency-domain objective function

J = qE∗j+1 ◦ Ej+1(u, v) + sF ∗j+1 ◦ Fj+1(u, v)

+ r
(
Fj+1 − Fj

)∗ ◦ (Fj+1 − Fj
)

(u, v)

at every iteration, where q, s, and r are real scalars that
penalize the error, the input, and the change in input with
respect to iteration, respectively. As shown in [12], the learning
filters

Lf (u, v) =
rI + qH∗o ◦Ho

qH∗o ◦Ho + sI + rI
(u, v)

Le(u, v) =
qH∗o

qH∗o ◦Ho + sI + rI
(u, v),

minimize the objective function J .
The RMC criterion described in Theorem 1 is evaluated

over a range of NO-SILC designs corresponding to the pa-
rameters q = 100, r ∈

[
10−10, 1010

]
, and s ∈

[
10−10, 1010

]
.

Results corresponding to the σ, 2σ, and 3σ cases for the
impulse response bounds

¯
h and h̄ are presented in Fig. 4a. For

each case, there is a clear demarcation line along the s design
space axis where the RMC criterion changes from satisfied to
not satisfied.

C. Experimental Study

Update laws designed using NO-SILC are applied to the e-
jet/AFM metrology system. Details of the experiment can be
found in [39]. The NO-SILC designs are superimposed on the
RMC evaluation map in Fig. 4a. Three of the experimentally
tested NO-SILC designs satisfy the RMC criterion in Theo-
rem 1 (for the case of σ for

¯
h and h̄), which provides a suffi-

cient condition for monotonic (for iteration-invariant systems)
and practical (for iteration-varying systems) convergence. The
six designs that are logarithmically near the RMC boundary
exhibit an iteration-domain response that dithers around a
converged value, as can be seen in Fig. 4b. However, the design
corresponding to q = 1 , r = 10−2, and s = 10−4, which
is distant from the boundary, exhibits an iteration-domain

8The identification method in [38] leads to a formulation such that each
coordinate of the impulse response has the same standard deviation.
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response in which the 2-norm of the error steadily increases
after approximately the 12-th iteration. The 2-norm of the
input signal increases with iteration as well (data not shown).
In brief, the RMC criterion provides a useful guideline for an
NO-SILC design to attain a practically convergent iteration-
domain response in the presence of iteration-varying effects,
as discussed in Section V.

It should be emphasized again that the RMC criterion
in Theorem 1 is only a sufficient conditions, and a less
conservative design procedure can rely on Proposition 1 at the
expense of increased computational burden. A possible design
procedure can use the equality in (5) in a nonlinear program
as in Section VI-A to yield more reliable estimates. It is also
important to note that the conservativeness of the RMC crite-
rion depends on the accuracy of the impulse response bounds.
The identification procedure used to estimate the bounds

¯
h and

h̄ in this study yields a similar statistical distribution for each
coordinate of the impulse response and leads to a lower bound

¯
h which is negative at the boundary–see Fig. 3d for the case
of 3σ. Research into system identification methods for spatial
systems is required to define precise bounds

¯
h and h̄, which is

a challenging problem due to the nature of AM applications,
and the high experimental cost when compared to the other
applications in the temporal domain.

VIII. CONCLUSION

In this paper, we investigated an extension of the spatial
iterative learning control (SILC) framework and analysis in-
troduced in [12] to understand SILC for spatially-varying and
uncertain plants. Our analysis treats spatial variations as inter-
val uncertainties with spatially-invariant bounds, to preserve
the computational efficiency in the frequency domain afforded
to spatially-invariant 2D systems. Computational efficiency is
particularly important to the target application of AM, which
often uses spatially-distributed sensing and thus creates large
datasets (MN > 104). The main contribution is the definition
of the RMC criterion for interval uncertain spatial systems
in the frequency domain. The utility of the RMC criterion
as a useful guideline to predict stability and practical conver-
gence of SILC in the presence of spatially/iteration-varying
uncertainties was demonstrated experimentally on a microscale
additive manufacturing system with spatial dynamics.

The frequency-domain analysis of RMC sets the stage for
future theoretical investigations. For instance, here we defined
SILC in the 2D spatial domain; however, AM applications
are often spatially 3D (for example, due to heat transfer)
and some AM tools, such as powder bed fusion, have im-
portant dynamics in the temporal domain. Naturally, new
theory will be required to expand the analysis dimensions;
we emphasize that as the number of dimensions expands,
computationally-efficient tools, such as the frequency-domain
analysis presented here, are even more important. Lastly, AM
processes have innate layer-to-layer dynamics [30], which can
be formalized as repetitive process with in-layer dynamics
defined on the 2D spatial domain; new theory in the form
of higher-order SILC analyses will be required to understand
the layer-to-layer problem.
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Fig. 4: Study of the RMC criterion for an array of NO-SILC
designs. a) Design space in which the RMC Criterion is satis-
fied. Only the range r ∈

[
10−5, 105

]
, and s ∈

[
10−5, 105

]
is

shown for clarity. Cross markers denote the NO-SILC designs
tested in the experiments. The RMC Criterion boundary is
dependent on the estimate of h and h̄. b) Normalized error-
norm plots from experiments of seven NO-SILC designs.

APPENDIX A
PROOFS OF THE PROPOSITIONS

Proof of Proposition 1. It is well known that the maximum of
a convex function on a compact convex polytope occurs at one
of its vertices. Now, the affine transformation H 7→ Lf − LeH
maps HI to another compact convex matrix polytope. More-
over, because affine transformations map vertices to ver-
tices, the set of vertices of Lf − Le(HI) is precisely the
set Lf − Le(HV ). Since every norm is a convex function, we
conclude

(
arg maxH∈HI Lf − LeH

)
∩HV is nonempty.

Proof of Proposition 2. Given
¯
a, ā ∈ RMN , define the vector

saturation function sat¯
a
ā : RMN → RMN so that

satā
¯
a(f) = (sat¯

a1
ā1(f1), sat¯

a2
ā2(f2), . . . , sat¯

aMN
āMN (fMN ))
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for any f , (f1, f2, . . . , fMN ) ∈ RMN , where

sat¯
ai
āi(fi) ,


¯
ai, if fi <

¯
ai

fi, if
¯
ai ≤ fi ≤ āi

āi, if fi > āi

for every i = {1, 2, . . . ,MN}. It is straightforward to check
that the vector saturation function is Lipschitz continuous with
Lipchitz constant 1 in any p-norm topology, with p ∈ [1,∞].
Next, define the function Ψ such that

Ψ(fj) = (Lf − LeH)fj + Led.

The operator Ψ maps the input fj to the input fj+1 in the
unconstrained case; cascading Ψ with the saturation function
recovers the true dynamics. Now for arbitrary f ,g ∈ RMN∥∥∥satā

¯
a(Ψ(f))− satā

¯
a(Ψ(g))

∥∥∥
p
≤
∥∥Ψ(f)−Ψ(g)

∥∥
p

=
∥∥(Lf − LeH)(f − g)

∥∥
p

≤ γ‖f − g‖p ,

hence we have a contraction with Lipschitz constant γ.

Proof of Proposition 3. The equality ‖Hr‖1 =‖Hr‖∞ fol-
lows from the definition of BCCB matrices as dis-
cussed in Section II. Also note that we have the prop-
erty ‖Hr‖2 ≤‖Hr‖∞ from the same section. The equality
between the two can be verified by noting that the vector
of ones is an eigenvector of Hr from circulant symmetry
and entrywise nonnegativity; Hr < 0. Since the corresponding
eigenvalue is ‖Hr‖∞, we conclude ‖Hr‖2 ≥‖Hr‖∞ and
thus ‖Hr‖2 =‖Hr‖∞.

From Proposition 1, we know that the norm will be maxi-
mized at a vertex of the set given by −Hr 4 Hδ 4 Hr. Then,
it is easy to check that the norm maximization of the 1- and
infinity norms are equivalent due to the BCCB structure of
the interval, and Hr is a maximizer. For the 2-norm case,
the results of [23] (alternatively, Appendix B of [20]) can be
invoked to see that Hr is a maximizer, thereby completing the
proof.

APPENDIX B
EXAMPLE STABILITY TEST

Below we show that it suffices to consider spatially-invariant
plants to check robust monotonic convergence in the 1-norm
topology. If Lf ,Le ∈ Circ(M,N) this further means that we
can rely on the DFT for a faster compuation.

Proposition 4. For any matrices Lf ,Le, there exists a BCCB
matrix Hmax ∈ HV such that

max
H∈HV

‖Lf − LeH‖1 =‖Lf − LeHmax‖1.

Proof. Assume that the maximum is achieved with the ma-
trix H′max. Then,

max
H∈HV

‖Lf − LeH‖1 =

MN∑
i=1

MN∑
l=1

|[Lf ]ij − [Le]il[H
′
max]lj |

for some j = 1, 2, . . . ,MN . Now recalling that each matrix
in Circ(M,N) can be uniquely identified by a single column,

we can extend the j-th column of H′max to a matrix that is
in Circ(M,N). Such a matrix would also be in HV since the
entries [H′max]lj ∈ {[

¯
H]lj , [H̄]lj} for all l, j ∈ ZMN .

APPENDIX C
PROOF OF THE MONOTONIC-CONVERGENCE RADIUS

The notions of asymptotic stability and monotonic conver-
gence can also be studied over the error recursion equation,
which amounts to analyzing the maximal spectral radius or
maximal norm of I−HLe over the set HI , when the special
case of Lf = I is considered. Note that asymptotic stability
can equivalently be considered in either the input vector or
the output vector, but monotonic convergence is specific to a
single vector sequence, the input or the output.

The results of [20] are mostly specific to the perfect tracking
case Lf = I and proceed by considering the matrix I−HLe.
However, it is straightforward to check that the validity of
Theorems 5.3 and 5.6 of [20] by making the appropriate
substitutions, as we have discussed in Section IV for the
interval stability radius. For the other change as it relates to the
monotonic-convergence radius, we do the following. Instead
of the matrix ∆Ts defined on page 60 of [20], define the
augmented perturbation matrix as

∆aug
LeH

,

[
0 (LeHδ)

∗

LeHδ 0

]
,

where Hδ is the plant perturbation. Then since ∆aug
LeH

is
symmetric, its spectral radius and maximal singular value are
equal. Thus, denoting by λ̄(.) the spectral radius, and by σ̄(.)
the maximal singular value, we have∥∥∥∆aug

LeH

∥∥∥
2

= σ̄(∆aug
LeH

) = λ̄(∆aug
LeH

)

= σ̄(LeHδ) =‖LeHδ‖2 ≤‖Le‖2‖Hδ‖2 ,

where the third equality can be verified from block matrix
determinant formulas. Therefore, the inequality∥∥∥∆aug

LeH

∥∥∥
2
≤‖Le‖2‖Hδ‖2

can be used in lieu of the inequality (5.33) on page 61 of [20],
to arrive at (11).
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